

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY ON BEHALF OF GLEESON LAND

Prepared by Odyssey Tuscany House White Hart Lane Basingstoke RG21 4AF

Tel: 01256 331144

March 2022

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

DOCUMENT CONTROL SHEET

Project Name Clay Lane, Fishbourne, Chichester

Project No. 19-079

Rev	Issue Purpose	Author	Checked	Reviewed	Approved	Date
-	Draft issued for team comment	JW	JW	NA	GG	April 2021
A	Updated for new site layout	НМ	JW	NA	GG	February 2022
В	Updated with Groundwater Monitoring Data	WL	JW	NA	GG	March 2022
С	Updated for Client name change	WL	JW	NA	GG	March 2022

CONTENTS 1.0 INTRODUCTION 1 2.0 EXISTING SITE CONDITIONS 2 3.0 PLANNING POLICY 6 10 4.0 SOURCES OF FLOOD RISK 5.0 SURFACE WATER DRAINAGE STRATEGY 13 6.0 FOUL WATER DRAINAGE STRATEGY 15 7.0 SUMMARY AND CONCLUSIONS 16

DRAWINGS

19-079-001F	Drainage	Strategy
-------------	----------	----------

19-079-002C SuDS Catchments

APPENDICES

- Appendix A Site Layout Plan
- Appendix B Site Location Plan
- Appendix C Topographical Survey
- Appendix D EA and SFRA Mapping
- Appendix E British Geological Survey Data
- Appendix F Groundwater Monitoring Data
- Appendix G Southern Water Sewer Records
- Appendix H Micro Drainage Calculations, Drainage Strategy and Catchment Drawing

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

Appendix I Maintenance Schedule

1.0 INTRODUCTION

1.1 General

1.1.1 Odyssey has been commissioned by Gleeson Land to undertake a Flood Risk Assessment (FRA), incorporating a surface water and foul water drainage strategy to be submitted in association with a planning application for proposed residential development with public open space at Clay Lane, Fishbourne, Chichester.

1.1.2 Outline planning application (with all matters reserved except for access) is being sought for the erection of up to 105 residential dwellings including affordable housing with the provision of vehicular and pedestrian and cycle access from Clay Lane, alongside open spaces, biodiversity enhancement, sustainable urban drainage systems, landscaping, infrastructure, and earthworks. A site layout is presented in **Appendix A**.

1.1.3 This report comprises of the following elements:

- summary of relevant planning policy;
- review of existing site conditions including the hydrology, geology and existing drainage regime of the site;
- assessment of the existing flood risk to the site; and
- proposed surface water and foul drainage strategy.

2.0 EXISTING SITE CONDITIONS

2.1 Location

2.1.1 The site is located at Clay Lane, Fishbourne, approximately two kilometres (km) west of Chichester town centre. The Ordnance Survey (OS) grid reference for the centre of the site is 483946E, 105181N and the nearest postcode for the site is PO19 3QF. A site location plan is shown in **Appendix B**.

2.1.2 The northern part of the site is currently used for agricultural purposes and is bounded by residential units and a field to the north, the A27 to the east, a railway to the south and residential development to the west. The southern part of the site is currently used for agricultural purposes, and is bounded by a railway to the north, the A27 to the east, residential development to the south, and commercial developments and residential units to the west.

2.2 Topography

2.2.1 A topographical survey was completed in April 2019 by Digital Terrain Surveys, which shows the existing levels across the site. The site slopes from north to south, with the highest point at approximately 9.66 metres Above Ordnance Datum (m AOD) on the northern boundary of the site, and the lowest point at 3.51m AOD at the south of the site. The topographical survey is shown in **Appendix C**.

2.3 Hydrology

2.3.1 The nearest Environment Agency (EA) designated main river, the River Lavant, passes approximately 950 metres (m) to the south of the site. There are also existing ditches on the site, which are identified on the topographical survey in **Appendix C**.

2.3.2 The Chichester District Council (CDC) Strategic Flood Risk Assessment (SFRA) mapping shows the site is in a Nitrate Vulnerable Zone for Eutrophic Waters. The CDC SFRA mapping is presented in **Appendix D**.

2.4 Geology and Hydrogeology

2.4.1 British Geological Survey (BGS) online maps (accessed March 2022) indicate the northern part of the site is underlain by London Clay Formation (clay, silt and sand). The southern part of the site is underlain by Lambeth Group (clay, silt and sand).

2.4.2 The BGS maps indicate there are superficial head deposits (gravel, sand, silt and clay) on the eastern side of the site and River Terrace deposits (sand, silt and clay) on the western side of the site. The BGS records are presented in **Appendix E.**

2.4.3 BGS hydrogeology mapping demonstrates the northern part of the site is located within the Thames Group aquifer, described as "*Rocks with essentially no groundwater*" and summarised as a "*Predominantly clayey sequence up to 140m thick confining underlying aquifers. Occasional springs at base have very hard water*".

2.4.4 BGS hydrogeology mapping demonstrates the southern part of the site is located within the Lambeth Group aquifer, described as a "*low productivity aquifer*" and summarised as a "*Variable sequence of clays, shell beds, fine sands, silts and pebble beds giving low yields. Sometimes in hydraulic continuity with underlying Chalk aquifer*".

2.4.5 EA mapping indicates the site is situated in Groundwater Source Protection Zone (SPZ) 1.

2.4.6 BGS records show a number of borehole scans on the site. The findings from some of the records are summarised below:

2.4.7 BGS borehole scan reference SU80NW40:

- Ground Level (GL) to 0.3m below ground level (bgl) Topsoil;
- 0.30m to 0.90m bgl Soft light brown and orangey clay;
- 0.90m to 3.59m bgl Firm grey and brown silty slightly sand clay;
- 3.59m to 6.00m bgl Stiff fissured grey silty clay;
- Groundwater was encountered at 2.80m bgl.
- 2.4.8 BGS borehole scan reference SU80NW41:
 - GL to 0.30m bgl Topsoil;
 - 0.30m to 1.50m bgl Soft light brown and orange very sandy clay with some gravel;
 - 1.50m to 3.30m bgl Firm orange-brown and grey very sandy clay and some gravel;
 - 3.30m to 6.50m bgl Firm to stiff fissured grey silty slightly sandy clay;
 - Groundwater was encountered at 2.90m bgl.
- 2.4.9 BGS Borehole scan reference SU80NW69:
 - GL to 0.90m bgl Soft grey-brown silty clay with some gravel;
 - 0.90m to 2.40m bgl Soft to firm grey and brown silty clay;

- 2.40m to 5.00m bgl Firm becoming stiff grey silty clay;
- Groundwater was not encountered.

2.4.10 Groundwater monitoring was carried out between October 2019 and March 2020 by BRD and documented in the Phase 2 Geo-Environmental Site Investigation Report (Document Reference BRD3511-OR2-D, dated February 2022). The results show groundwater at the site ranges between 3.88m bgl and ground level. The groundwater monitoring data is presented in **Appendix F**.

2.5 Existing Drainage Regime

2.5.1 The site is currently undeveloped and used for agricultural purposes. It is anticipated surface water currently infiltrates into the ground, with any excess water from the northern part of the site discharging towards the railway, and excess water from the southern part of the site flowing onto the adjacent road, owing to the topography of the site.

2.5.2 According to Southern Water (SW) records, there is no existing public surface water sewer network on site. There is a surface water sewer from the northern residential area which discharges into the ditch to the north of the site. There are no other surface water sewers in the vicinity of the site.

2.5.3 SW records show there is no existing public foul sewer network on the site. There are existing public foul sewers within the residential area to the west of the site. The main sewer is located along Salthill Road, to the west of the site. There is also a foul sewer located within the residential area on the eastern side of the A27, along Clay Lane. SW records are shown in **Appendix G**.

2.5.4 The developable area for this site is less than 50ha, meaning the Institute of Hydrology (IoH) Report 124 Flood Estimation for Smaller Catchments (1994) method is suitable to estimate greenfield peak flow rates (50ha is used in the formula and the flow rate value is linearly interpolated based on the ratio of the development area). This methodology is approved in the EA's Rainfall Runoff Management for Developments Report; the parameters used are shown in **Table 2.1**.

Table 2.1 Interim Code of Practice SuDS Parameters

Parameter	Value	Unit
SAAR	769	Millimetres (mm)
Soil Index	0.400	-
Region	7	-
Urban	0.000	-

2.5.5 **Table 2.2** summarises the estimated current greenfield discharge rates for the site based on the total impermeable area (1.93ha). Supporting calculations are provided in **Appendix H**.

Table 2.2: Greenfield Run Off Rates

Return Period	Existing Greenfield Discharge Rates from Site (litres per second (I/s))	Existing Greenfield Discharge Rates per Hectare (I/s/ha)
QBAR	7.3	3.8
Q30	16.6	8.6
Q100	23.4	12.1

3.0 PLANNING POLICY

3.1 Flood and Water Management Act (2010)

3.1.1 The Flood and Water Management Act (FWMA) received royal assent on 8th April 2010. It was intended to implement Sir Michael Pitt's recommendations following the widespread summer 2007 floods. Guidance and information notes are published online by the Department for Environment, Food and Rural Affairs (Defra) to address a range of aspects concerning the act.

3.1.2 The FWMA encourages the use of Sustainable Drainage Systems (SuDS) on development sites by removing the automatic right to connect to sewers.

3.1.3 The development proposals for the site considered by this report should adhere to the FWMA through the provision of SuDS as a fundamental component of the surface water drainage scheme.

3.2 National Planning Policy Framework (2021)

3.2.1 The National Planning Policy Framework (NPPF) sets out the Government's planning policies, and how these policies should be applied. Planning Practice Guidance (PPG) is available online and provides additional guidance to the NPPF, as well as providing links to relevant current detail documents. Please refer to **Section 3.3** for further detail.

3.2.2 Paragraph 155 of the NPPF states "inappropriate development in areas at risk of flooding should be avoided by directing development away from areas of highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere."

3.2.3 Paragraph 163 of the NPPF states "when determining planning applications, Local Planning Authorities (LPAs) should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by a site-specific flood-risk assessment. Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:

- Within the site, the most vulnerable development is located in areas of lowest flood risk unless there are overriding reasons to prefer a different location.
- The development is appropriately flood resistant and resilient.
- It incorporates Sustainable Drainage Systems, unless there is clear evidence that this would be inappropriate.

- Any residual risk can be safely managed.
- Safe access and escape routes are included where appropriate, as part of an agreed emergency plan."

3.2.4 In accordance with the NPPF, a site-specific FRA is required for sites within the following categories:

- In Flood Zone 1, all proposals involving:
 - sites of 1 hectare or more;
 - o land which has been identified by the EA as having critical drainage problems;
 - land identified in a strategic flood risk assessment as being at increased flood risk in future;
 - land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use;
 - All proposals for development in Flood Zones 2 or 3.

3.3 Planning Practice Guidance (2021)

3.3.1 The PPG for Flood Risk and Coastal Change provides additional direction to the NPPF, with details provided in each section of the document on how to conform to the NPPF.

3.3.2 All land in England is classified as falling into one of three main flood zones, with the zones referring to the probability of river or sea flooding, ignoring the existence of defences. Table 1 of the PPG identifies and describes the EA flood zones as:

- Flood Zone 1: Low probability, land assessed as having less than a 1 in 1,000 annual probability of river or sea flooding (<0.1%);
- Flood Zone 2: Medium probability, land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% 0.1%);
- Flood Zone 3: High probability, land assessed as having a 1 in 100 or greater annual probability of river flooding (≥1%), or a 1 in 200 or greater annual probability of sea flooding (≥0.5%);
- Flood Zone 3b: The Functional Floodplain, land where water has to flow or be stored in times of flood (as identified by the LPAs in the Strategic Flood Risk Assessments).

3.3.3 Paragraph 080 of the PPG sets out the following drainage hierarchy the discharge of surface water runoff should adhere to:

- into the ground (infiltration);
- to a surface water body;

- to a surface water sewer, highway drain, or another drainage system; and,
- to a combined sewer.

3.4 Non-Statutory Technical Standards for Sustainable Drainage Systems (2015)

3.4.1 The Non-Statutory Technical Standards for Sustainable Drainage Systems was published by Defra in March 2015. The standards are to be used to manage surface water runoff in accordance with Schedule 3 of the FWMA.

3.4.2 The Technical Standards document provides guidance on runoff destination, peak flow rate, volume and control of water quality and function.

3.4.3 The LPA may set local requirements for planning permissions that have the effect of more stringent requirements than those of the standards referred to above.

3.5 Chichester District Council Local Plan

3.5.1 Policy 42 of the CDC Local Plan states:

"Flood and erosion risk will be taken into account at all stages in the planning process to avoid inappropriate development in areas at current or future risk, and to direct development away from areas of highest risk.

Development in areas at risk of flooding as identified by the Environment Agency flood risk maps will be granted where all the following criteria are met:

- 1. The proposal meets the sequential and exception test (where required) in relation to the National Planning Policy Framework;
- 2. A site-specific flood risk assessment demonstrates that the development will be safe, including the access and egress, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall;
- 3. The proposal incorporates specific requirements of the site, and protection, resilience and resistance measures appropriate to the character and biodiversity of the area;
- Development would not result/exacerbate coastal squeeze of any European sites or prevent managed realignment that may be required to ensure no adverse effect on European sites as a result of coastal squeeze;
- 5. The scheme identifies adaptation and mitigation measures;
- 6. Appropriate flood warning and evacuation plans are in place; and

7. New site drainage systems are designed taking account of events which exceed the normal design standard i.e. consideration of flood flow routing and utilising temporary storage areas.

All development will be required to ensure that, as a minimum, there is no net increase in surface water run-off. Priority should be given to incorporating Sustainable Drainage Systems (SuDS) to manage surface water drainage, unless it is proven that SuDS are not appropriate. Where SuDS are provided arrangements must be put in place for their whole life management and maintenance.

In locations where strategic flood defence or adaptation measures are necessary within the site itself, proposals will be required to demonstrate how measures have been incorporated as an intrinsic part of the scheme in a manner which meets the requirements to manage flood risk.

All development proposals must take account of relevant Surface Water Management Plans, South East River Basin Management Plan and Catchment Flood Management Plans and related flood defence plans and strategies. Financial contributions may be required from development on sites where measures to address flood risk or to improve the environmental quality of watercourses have been identified by these plans and strategies and in accordance with the overall objective of the Water Framework Directive. The reports prepared as part of the criteria above must demonstrate that the development is safe and will not increase flood risk elsewhere; will reduce overall flood risk and take into account contingency allowances, addressing climate change as set out in the NPPF Technical Guidance and the relevant Shoreline Management Plans and Coastal Defence Strategy."

4.0 SOURCES OF FLOOD RISK

4.1 Fluvial Flooding

4.1.1 Fluvial flooding is caused by flows in rivers or streams exceeding the capacity of the river channel and spilling into the floodplain. Fluvial flooding can also occur on designated floodplain land after a period of heavy rainfall.

4.1.2 The EA's Flood Map for Planning (accessed February 2022) shows the site is entirely located in Flood Zone 1; land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1% Annual Exceedance Probability (AEP)). The EA's Flood Map for Planning is presented in **Appendix D**.

4.1.3 The flood risk vulnerability classification of dwellings is deemed as 'more vulnerable'. In accordance with the PPG, development of this nature in Flood Zone 1 is acceptable.

4.1.4 There are no historic records of the site being affected by fluvial flooding in the CDC SFRA historic flood mapping. The historic flood mapping is presented in **Appendix D**. The risk of flooding from fluvial sources is considered to be low.

4.2 Surface Water Flooding

4.2.1 Surface water (pluvial) flooding is caused by rainfall levels exceeding the natural infiltration properties of the surrounding soils. Flooding can occur where there is a lack of a formalised drainage system or as a result of a poorly designed or maintained sewer system. Flooding can also occur owing to the absence of a natural method of drainage such as watercourses or ditches, or where soil infiltration rates are low. Flooding often results in ponding of water at low points or when surface water flow routes are blocked by an obstruction.

4.2.2 The EA's Risk of Flooding from Surface Water (RoFSW) mapping (accessed March 2022) shows most of the site is at 'very low' (less than 0.1% AEP) risk of pluvial flooding. There are areas at 'low' (between 0.1 and 1% AEP) risk of surface water flooding, which mainly follow the ditches present on and adjacent to the site. There are some small areas at 'medium' (between 1 and 3.3% AEP) and 'high' (greater than 3.3% AEP) risk, corresponding to existing ditches and a culvert under the railway respectively.

4.2.3 The CDC SFRA historic mapping shows two sewer or surface water drainage events which could have occurred on the south side of the site. These could coincide with the railway culvert where the greatest risk of surface water flooding is highlighted in EA mapping.

4.2.4 The risk of flooding from pluvial sources is considered to be low.

4.3 Groundwater Flooding

4.3.1 Groundwater flooding is caused by the emergence of water originating from sub-surface permeable strata. A groundwater flood event results from a rise in groundwater level sufficient for the water table to intersect the ground surface and inundate low lying land. Periods of prolonged rainfall may also be a cause of groundwater flooding, with aquifers and soils becoming saturated.

4.3.2 The CDC SFRA mapping shows the site is located in an area where the groundwater is either between 0.025m and 0.5m below the ground surface, and in an area where the groundwater levels are either at or very near (within 0.025m of) the ground surface. The risk of groundwater flooding mapping is presented in **Appendix D**.

4.3.3 Groundwater monitoring carried out for the site confirms the groundwater is at levels ranging from 0.85m bgl to the ground surface. Groundwater monitoring data is presented in **Appendix F**.

4.3.4 The CDC SFRA historic flooding mapping does not show any specific groundwater flooding incidents, however the SFRA does highlight that flooding in the Chichester area has previously been *"influenced by contributions from groundwater"*.

4.3.5 The risk of flooding from groundwater is considered to be medium.

4.4 Sewer Flooding

4.4.1 Sewer flooding can occur due to the failure of existing foul or surface water drainage infrastructure. If flows within the drainage system exceed the designed capacity, or if foreign matter causes blockages, overflow to the surface can occur, leading to flooding.

4.4.2 The CDC SFRA highlights an existing issue of sewer flooding in the Chichester area. The high groundwater level mentioned in **Section 4.3** can lead to groundwater ingress into the existing sewer network and cause over capacity in the Wastewater Treatment Works. This in turn causes emergency discharges into the receiving water bodies. In addition, the area is in a Nitrate Vulnerable Zone for Eutrophic Waters, and therefore the area is sensitive to additional foul flows which contain nitrates.

4.4.3 The site is currently greenfield, and SW records show there are no existing foul sewers on the site. The CDC SFRA historic mapping shows two incidents of sewer or surface water drainage

flooding. It is anticipated they were surface water flooding incidents due to the absence of sewers in the vicinity of the site. The CDC SFRA historic flood mapping is presented in **Appendix D**.

4.4.4 The risk of flooding from sewers for the site is currently considered to be low.

4.5 Artificial Sources

4.5.1 Failure and overtopping of reservoirs and navigable water bodies, and failure of water mains constitute the primary means of flooding from artificial sources.

4.5.2 The CDC SFRA Reservoir Flood Extents mapping shows the site is not located within an area at risk of reservoir flooding. CDC SFRA reservoir flood mapping is presented in **Appendix D**.

4.5.3 The CDC SFRA states "there are no records of flooding from reservoirs impacting properties inside the study area". The study area includes the site.

4.5.4 The nearest canal to the site is Chichester Canal, which is located approximately 2km to the south-east. The CDC SFRA also states, "*There are no recorded incidents of breach or overtopping of canals within the study area*". The study area includes the site.

5.0 SURFACE WATER DRAINAGE STRATEGY

5.1 Surface Water Drainage Strategy Requirements

5.1.1 Any surface water drainage strategy must demonstrate that the proposed development would be drained in a sustainable manner, commensurate with local and national policy. The NPPF requires that flood risk to land and property is not increased as a result of new development.

5.2 Proposed Surface Water Drainage Strategy

5.2.1 The proposed surface water management strategy described below is outlined in **Drawing 19-079-001F**, which is presented in **Appendix H.** The proposed catchment areas are shown in **Drawing 19-079-002C** which is also presented in **Appendix H**.

5.2.2 As set out in **Section 3.3**, the drainage hierarchy states the first option for surface water discharge should be infiltration. The levels of the groundwater recorded in the groundwater monitoring (see **Section 2.4**) show infiltration would not be viable, as the required 1m depth between the base of an infiltration feature and the groundwater level could not be achieved.

5.2.3 The second most-preferred option is discharge to a watercourse. There are existing drains running the length of the site. It is proposed to discharge to the ditches using gravity connections.

5.2.4 It is proposed that surface water generated by the proposed development would drain to two lined detention basins near the southern boundary of the northern part of the site. The basin volumes have been calculated to attenuate flows for all rainfall events up to a 1 in 100 year storm plus 40% to account for climate change. The total flow from the two basins would be discharged at the Qbar rate for the site.

5.2.5 Urban creep would be accounted for in drainage calculations by incorporating an additional 10% of the roof area into the total impermeable area.

5.2.6 With regards to exceedance flows, it is anticipated that surface water would be conveyed to the topographical low points on site and routed away from proposed dwellings.

5.3 Water Quality

5.3.1 Improving water quality is a key principle of a SuDS system. Steps would be taken to ensure water quality on site and of any water leaving the site is not negatively impacted by the proposed development. **Table 5.1** details the Pollution Hazard Indices of the different land use classifications

of the site, in accordance with the Construction Industry Research and Information Association (CIRIA) SuDS Manual 2015 (C753).

Table 5.1: Pollution Hazard Indices for Proposed Development

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydro- carbons
Residential	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks, low traffic roads (e.g. cul-de-sacs, home zones and general access roads) and non-residential car parking with infrequent change (e.g. schools, offices) i.e. <300 traffic movements/day	Low	0.5	0.4	0.4

5.3.2 The pollution hazard level for the proposed development would be 'low'. All surface water generated by the proposed development would be attenuated in detention basins before discharging to the ditch. The SuDS mitigation indices are presented in **Table 5.2**, in accordance with the guidance contained in the CIRIA SuDS Manual.

5.3.3 The detention basins would provide an appropriate level of surface water runoff treatment, as shown in **Table 5.2**.

Table 5.2: SuDS Mitigation Indices for Proposed SuDS Features

		Mitigation Indices	
Type of SuDS Component	Total Suspended Solids (TSS)	Metals	Hydro-carbons
Detention Basin	0.5	0.5	0.6

5.4 SuDS Maintenance Requirements

5.4.1 Maintenance of the drainage system and of any implemented SuDS features would be carried out in accordance with the manufacturer guidance and through an approved maintenance management plan to minimise the residual flood risk of drainage system blockage.

5.4.2 Maintenance would be the responsibility of the developer to assign, however for clarity in this FRA, the maintenance measures which would typically be undertaken for detention basins are included in **Appendix I**. This is information is extracted from the CIRIA SuDS Manual.

6.0 FOUL WATER DRAINAGE STRATEGY

6.1 General

6.1.1 Peak design discharges for dwellings would be calculated based on Sewerage Sector Guidance which sets out the expected foul water flow as follows:

Residential domestic flow = 4,000 litres/dwelling/day (peak)

6.1.2 There is no existing SW public foul sewer network in the immediate vicinity of the site. It is proposed that foul water from the development (4.86l/s) would be conveyed via gravity to a private wastewater treatment plant, situated at the low point near the southern boundary of the northern site. The treated effluent would discharge to the ditch.

6.1.3 A series of wetlands have been designed in the southern part of the site; water would be diverted from the ditch into the wetlands to provide nutrient removal, prior to discharge back into the ditch. The total area of the wetlands has been developed in collaboration with Natural England.

7.0 SUMMARY AND CONCLUSIONS

7.1 General

7.1.1 Odyssey has been commissioned by Gleeson Land to undertake an FRA, incorporating a surface water and foul water drainage strategy to support the proposed development at Clay Lane, Fishbourne, Chichester.

7.1.2 Based on EA flood maps, the site is shown to be located within Flood Zone 1. The site mostly lies in an area at 'very low' risk of surface water flooding, with areas of higher risk associated with existing ditches on the site and a culvert under the railway.

7.1.3 High groundwater levels show infiltration on the site would not be feasible, and therefore it is proposed to discharge to the existing ditches that run across the site. Two detention basins would be used to attenuate the surface water up to the 1 in 100 year event, including an allowance of 40% for climate change. The basins would discharge flows at a total rate equivalent to Qbar.

7.1.4 It is proposed that foul water from the development would be conveyed via gravity to a private wastewater treatment plant, situated at the low point near the southern boundary of the northern site. The treated effluent would discharge to the ditch.

7.1.5 A series of wetlands have been designed in the southern part of the site; water would be diverted from the ditch into the wetlands to provide nutrient removal, prior to discharge back into the ditch. The total area of the wetlands has been developed in collaboration with Natural England.

7.1.6 This FRA demonstrates the proposed development can be drained in a sustainable manner, commensurate with national and local policy.

APPENDIX A

Site Layout Plan

Ordnance Survey (c) Crown Copyright 2021. All rights reserved. Licence number 100022432 This drawing is for planning purposes only Copyright of richards urban design ltd.

Site LAND WEST OF CLAY LANE, FISHBOURNE

Drawing Illustrative masterplan

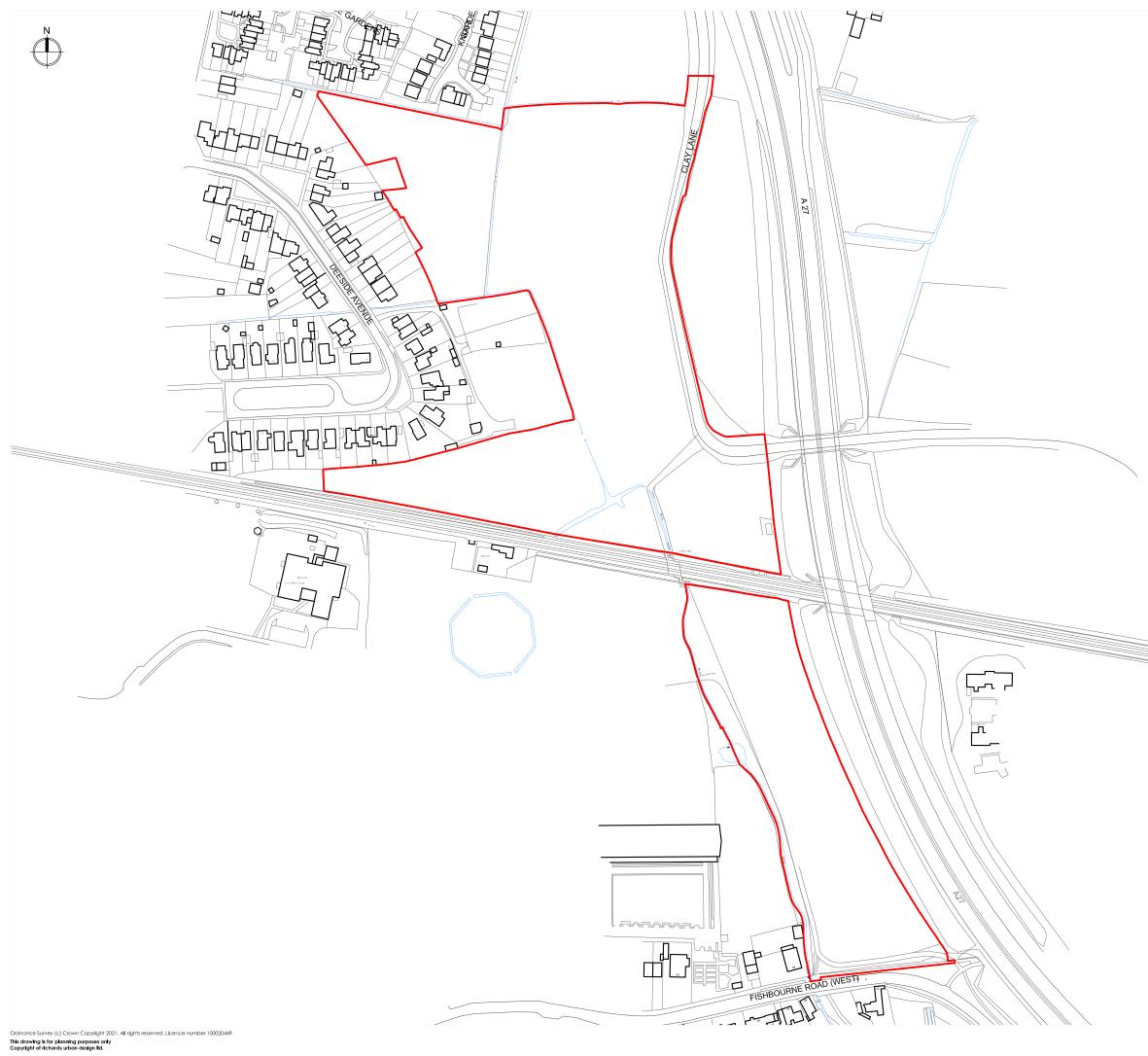
Scale

1:1250@A1

^{Date} 21.02.22

KEY

Site boundary


•••••• Existing public right of way

Indicative location of proposed railway crossing

APPENDIX B

Site Location Plan

LAND WEST OF CLAY LANE, FISHBOURNE

Drawing Site location plan

Scale	
1.0500@12	

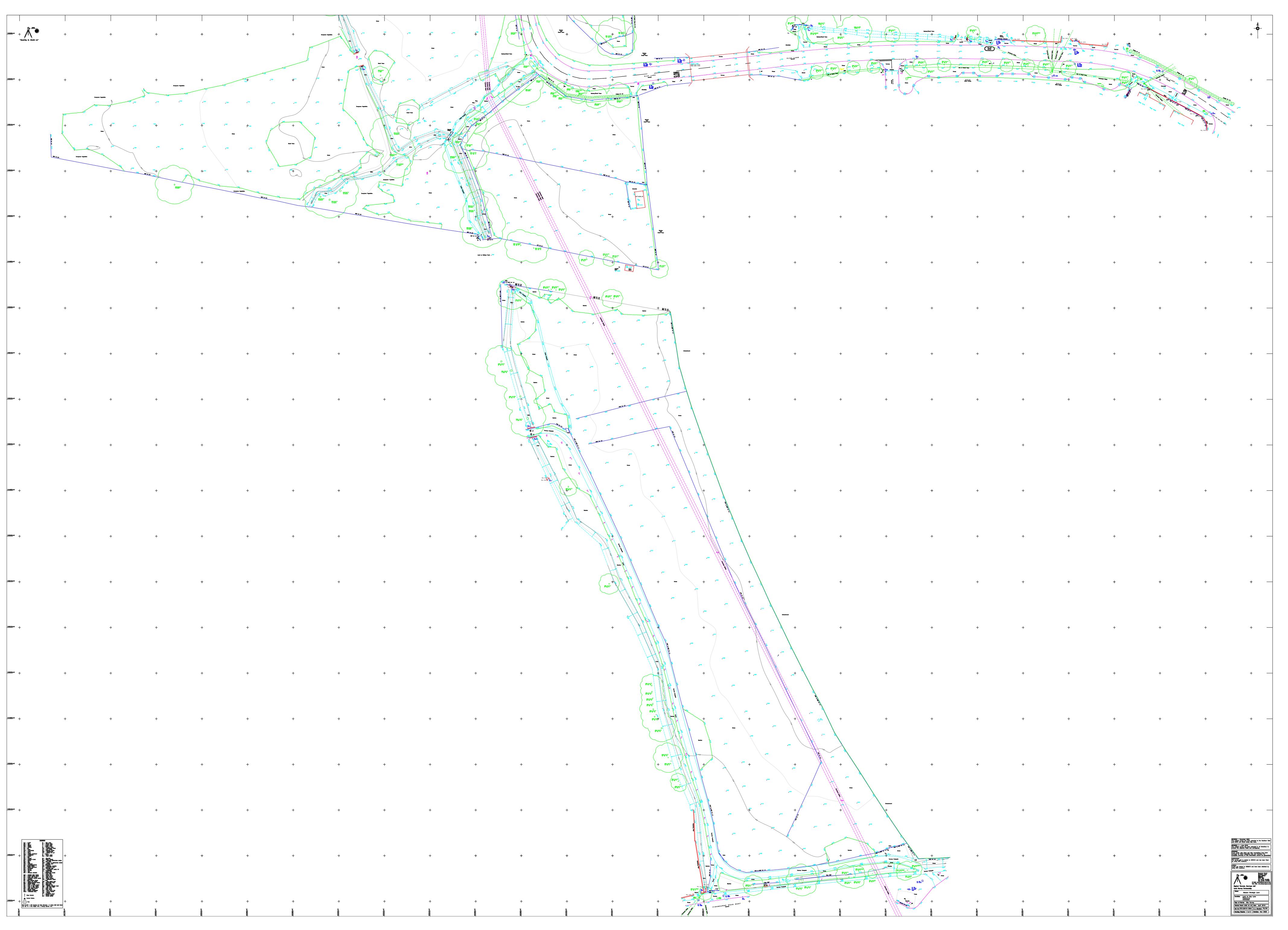
1:2500@A3

^{Date} 21.02.22

Drawing ref 1270.**01**

KEY

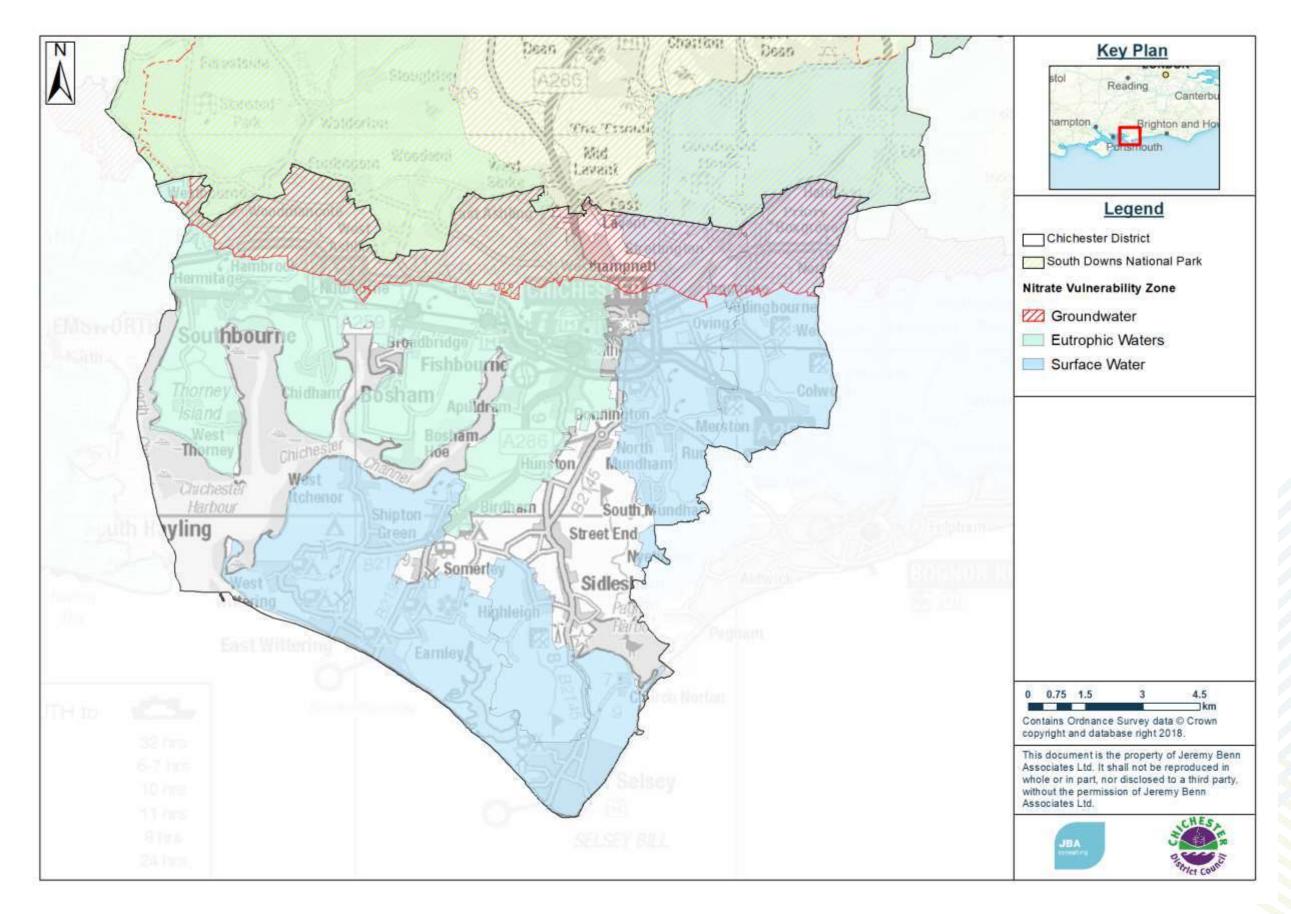
Site boundary



APPENDIX C

Topographical Survey

																			+
<u>108820</u> mN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
<u>108600</u> mM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
<u>105580</u> mN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
<u>108560</u> mM	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+
<u>105540</u> m¥	+	+	+	+	+	+	+	+		AT - PILOYNA - PILOYNA - IL - IL	+	+	+	+	+	+	+	+	+
<u>108520</u> mM	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+


+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+

APPENDIX D

EA and SFRA Mapping

Figure 9-5: Nitrate Vulnerability Zones in the north Local Plan area

Flood map for planning

Your reference 19-079

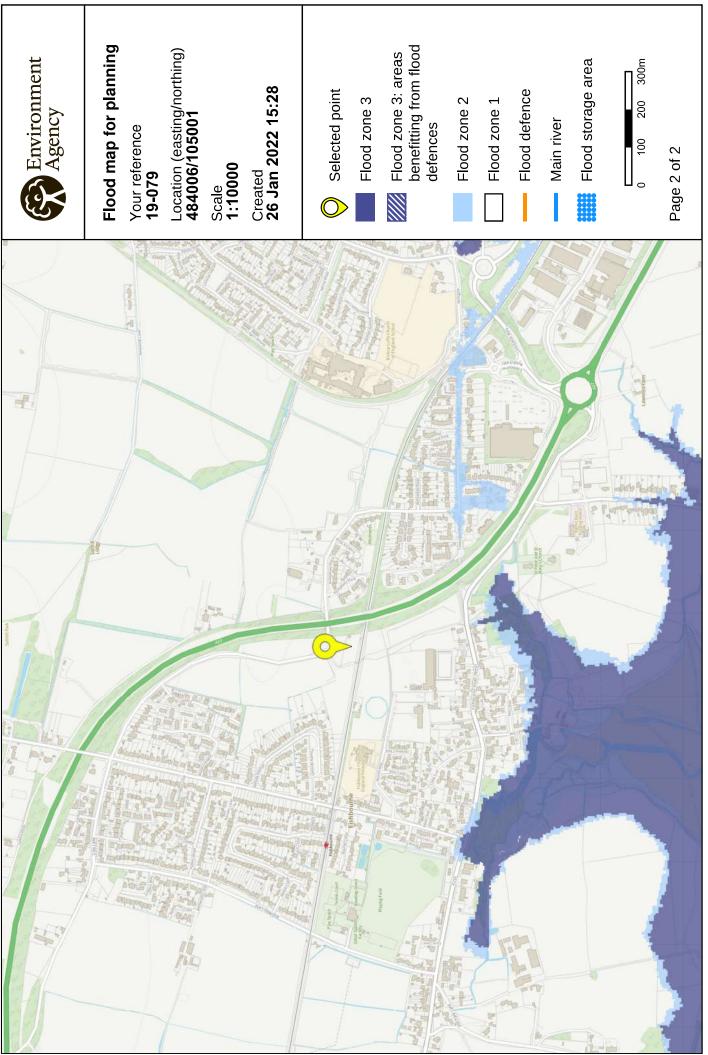
Location (easting/northing) **484006/105001**

Created **26 Jan 2022 15:28**

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1 hectare or affected by other sources of flooding or in an area with critical drainage problems


Notes

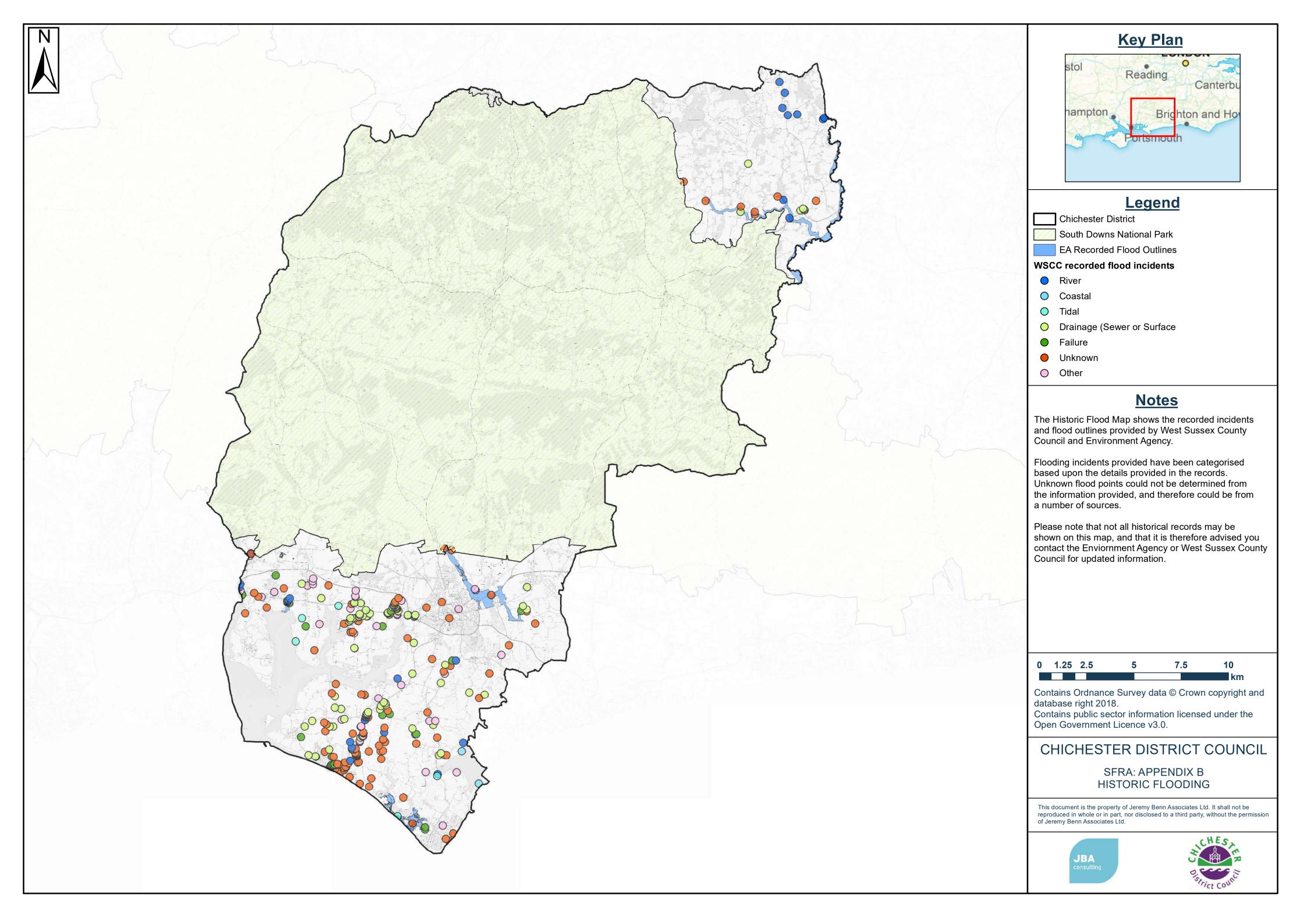
The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

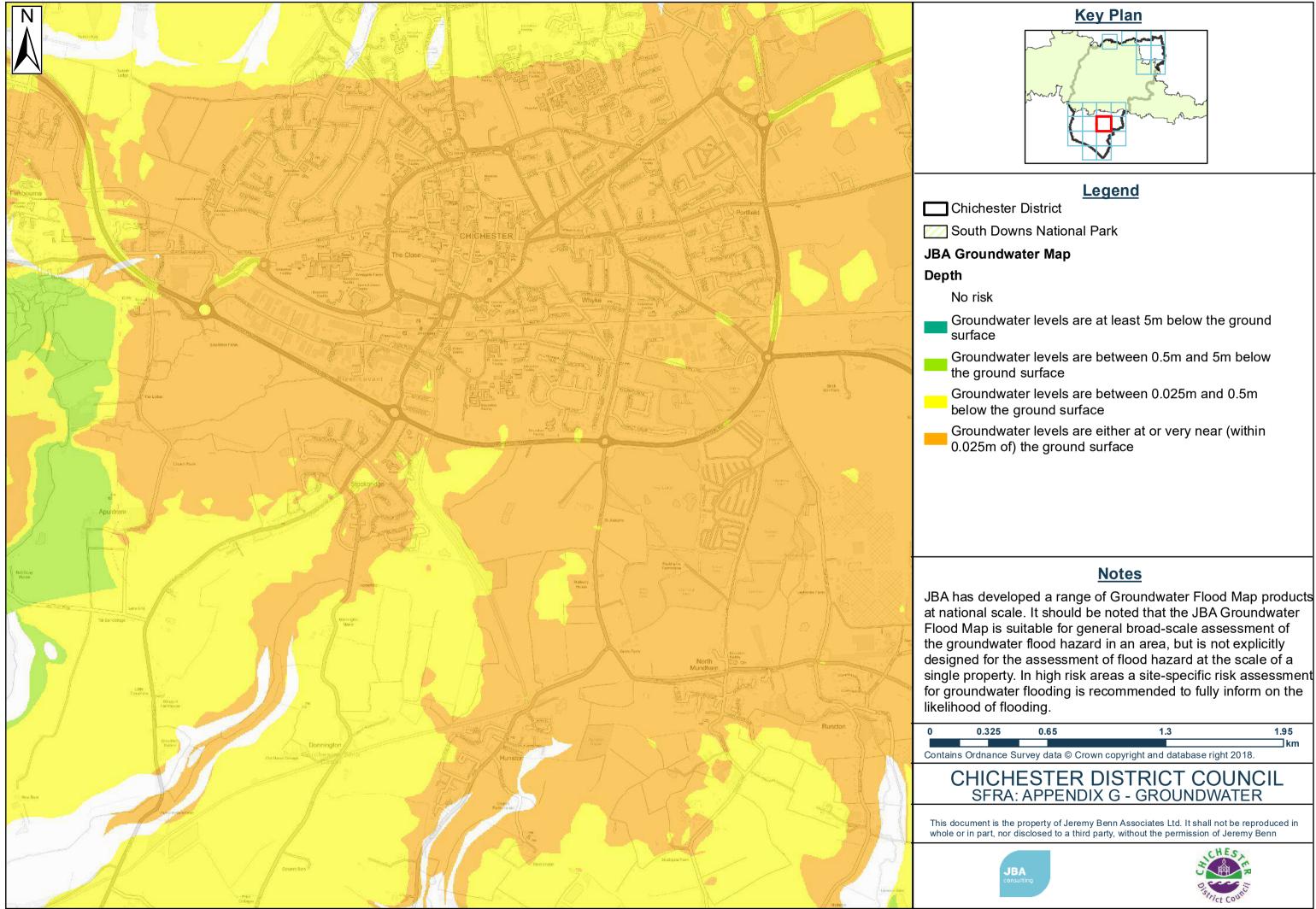
This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

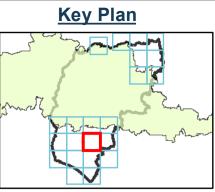
Flood risk data is covered by the Open Government Licence which sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

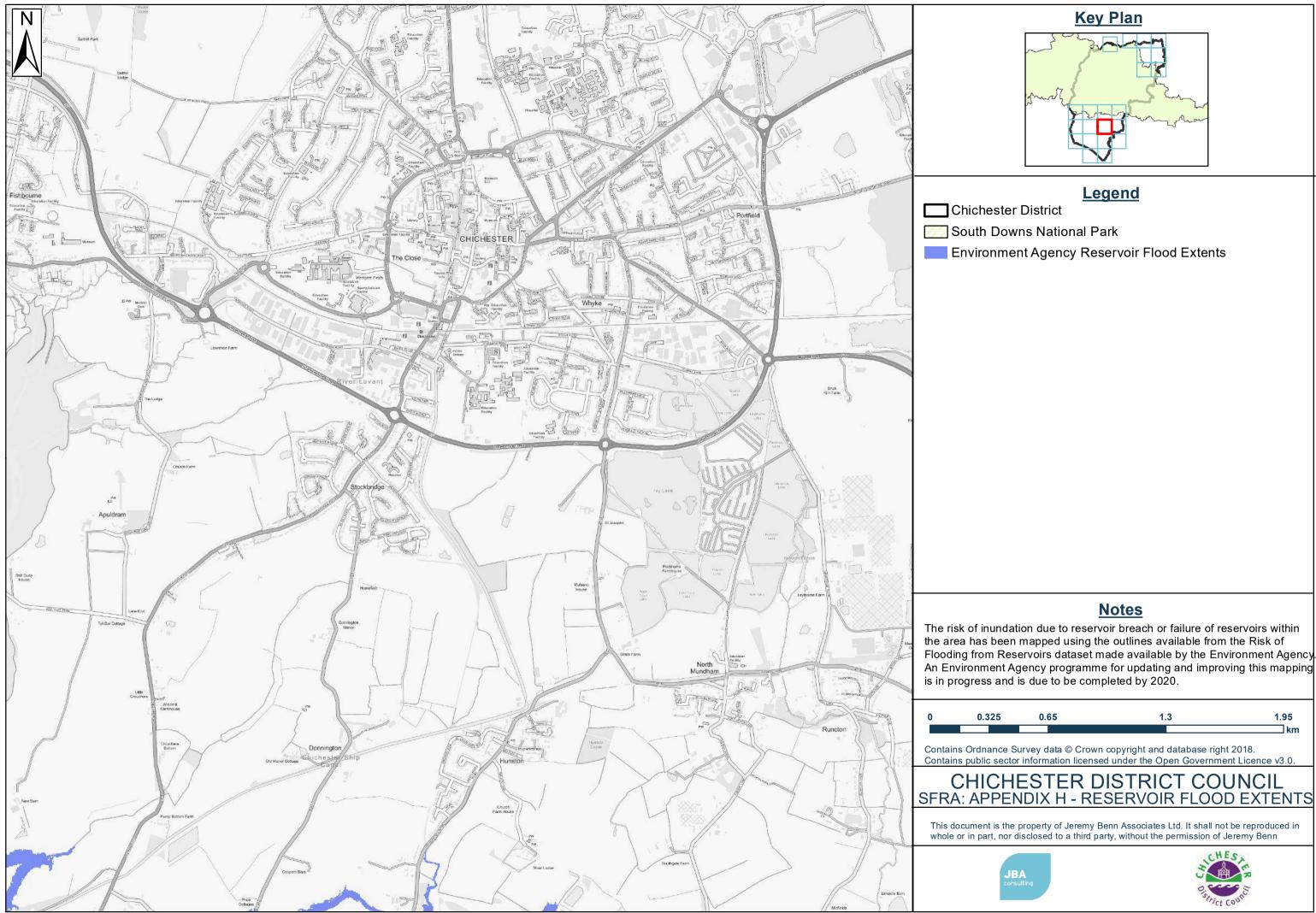
Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2021 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

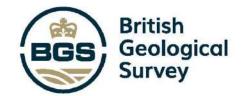

Extent of flooding from surface water

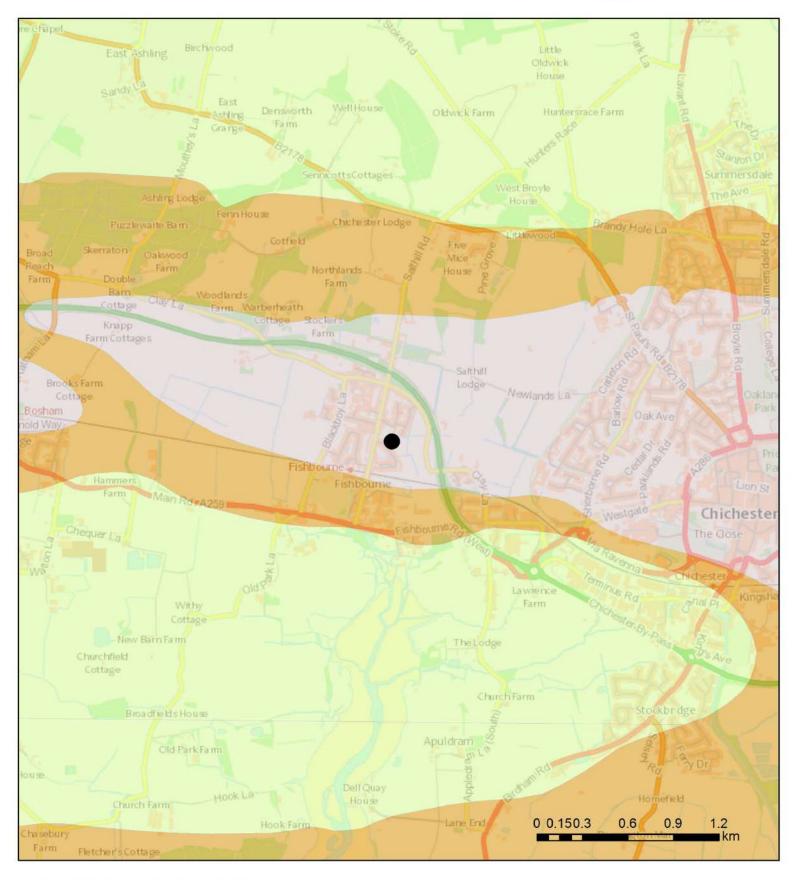

Low


Medium


High

Very low 🕀 Location you selected



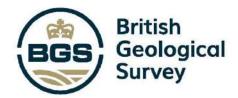


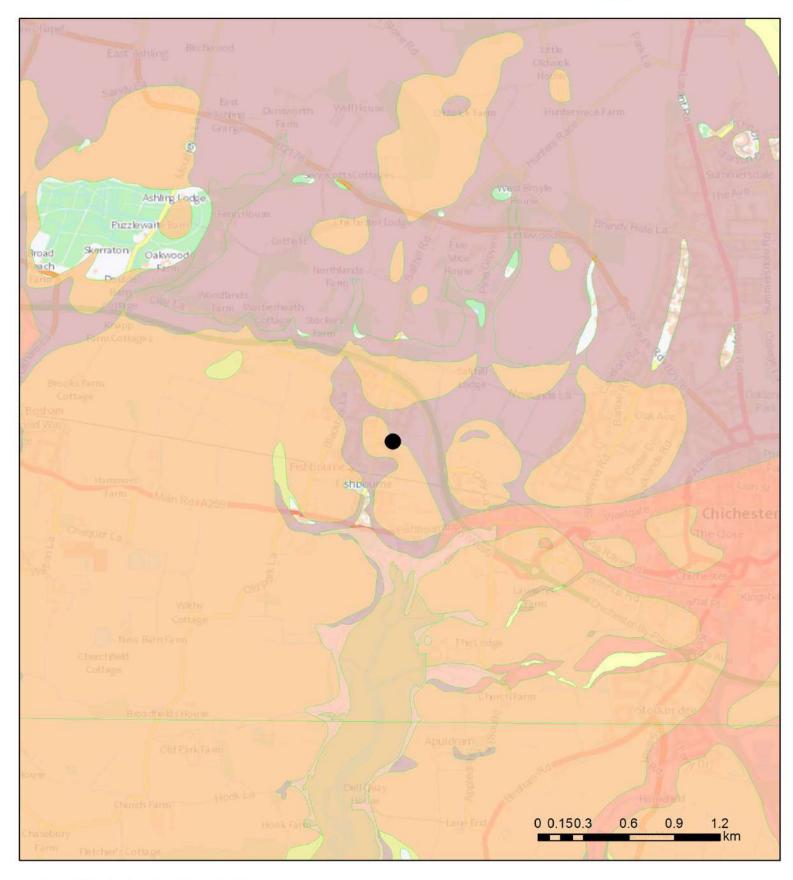
APPENDIX E

British Geological Society Data

Bedrock Geology Report

Contains OS data © Crown Copyright and database right 2020


GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

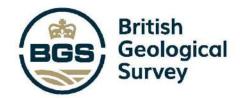

Map Key

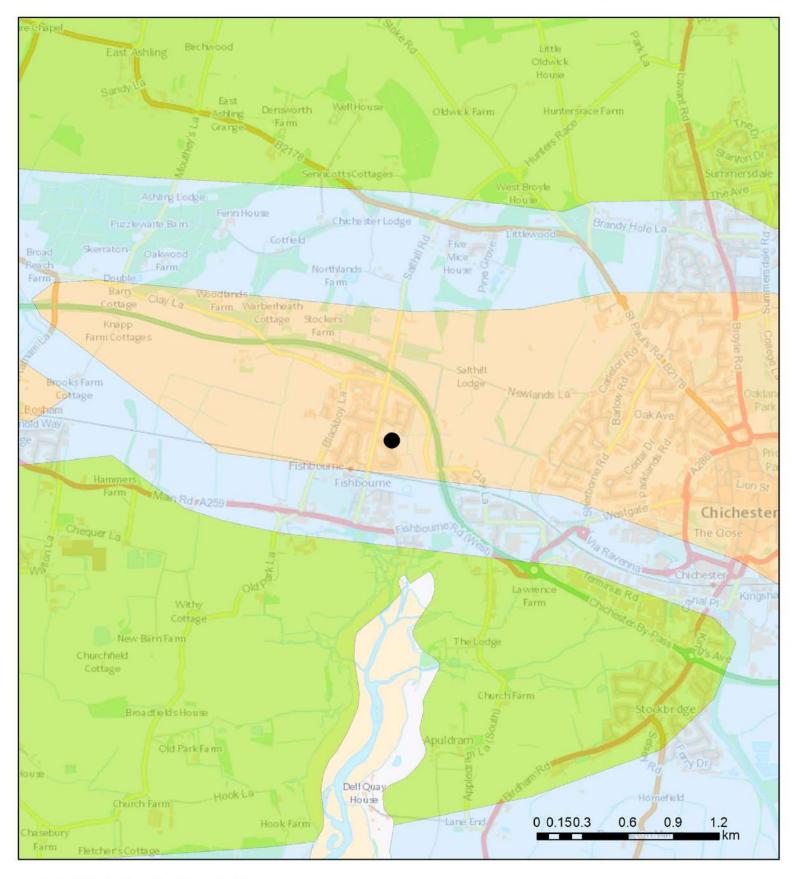
Bedrock geology 1:50,000 scale

- LONDON CLAY FORMATION CLAY, SILT AND SAND
- LEWES NODULAR CHALK FORMATION, SEAFORD CHALK FORMATION, NEWHAVEN CHALK FORMATION, CULVER CHALK FORMATION AND PORTSDOWN CHALK FORMATION (UNDIFFERENTIATED) - CHALK
- LAMBETH GROUP CLAY, SILT AND SAND

Superficial Deposits

Contains OS data © Crown Copyright and database right 2020


GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey


Map Key

Superficial deposits 1:50,000 scale

- ALLUVIUM CLAY, SILT, SAND AND GRAVEL
- RAISED MARINE DEPOSITS CLAY, SILT, SAND AND GRAVEL
- HEAD CLAY AND GRAVEL
- RAISED BEACH DEPOSITS, 2 SAND AND GRAVEL
- ALLUVIAL FAN DEPOSITS CLAY, SILT, SAND AND GRAVEL
- RAISED BEACH DEPOSITS, 1 SAND AND GRAVEL
- BEACH AND TIDAL FLAT DEPOSITS (UNDIFFERENTIATED) CLAY, SILT, SAND AND GRAVEL
- RAISED STORM BEACH DEPOSITS, 2 GRAVEL

Hydrogeology Report

Contains OS data © Crown Copyright and database right 2020

GeoIndex Onshore Data Sources: NERC, Natural England, English Heritage and Ordnance Survey

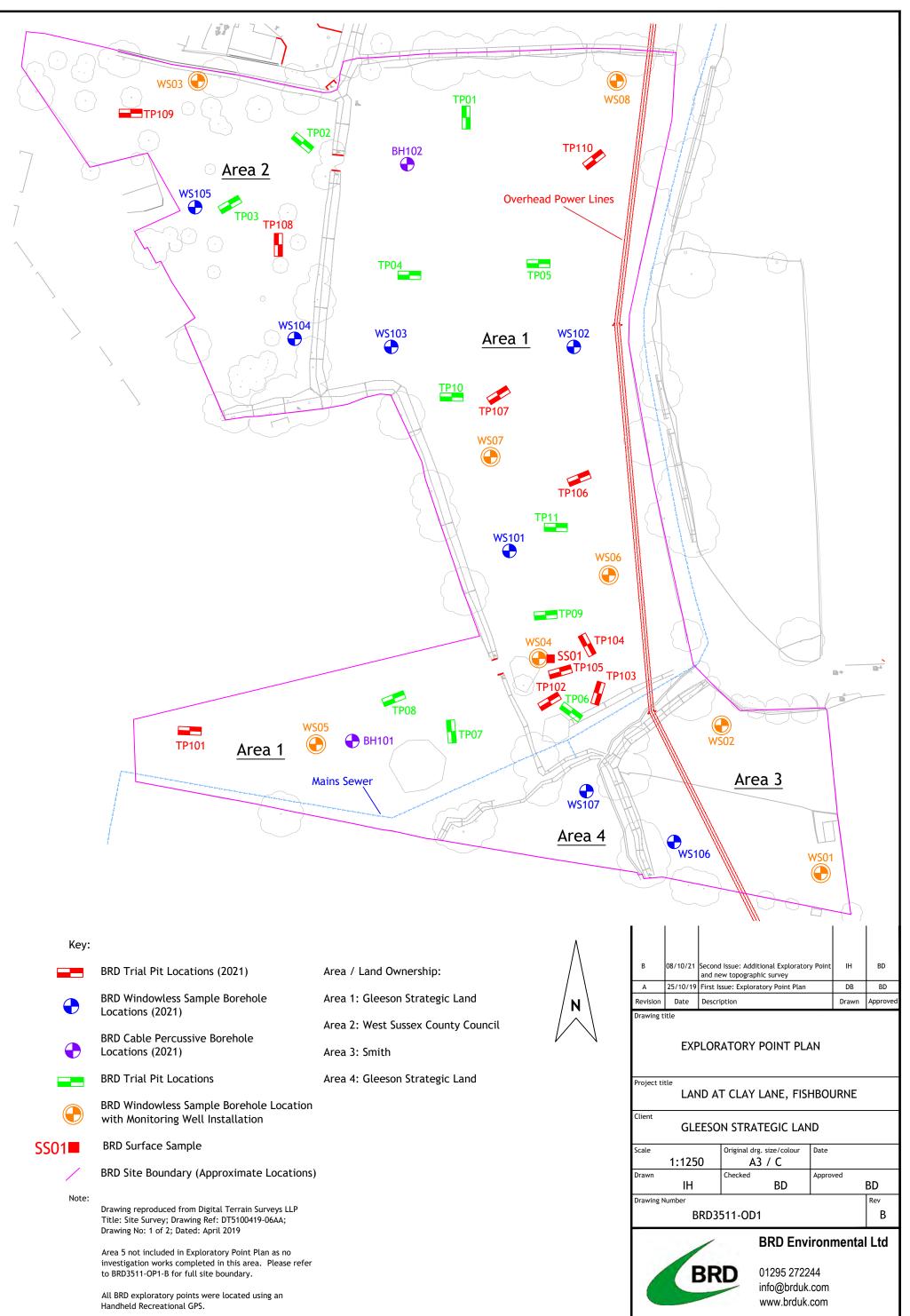
Map Key

Hydrogeology 1:625,000 scale

Aquifers with significant intergranular flow

Highly productive aquifer

Moderately productive aquifer

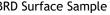

Low productivity aquifer

Aquifers in which flow is virtually all through fractures and other discontinuities

- Highly productive aquifer
- Moderately productive aquifer
- Low productivity aquifer
- Rocks with essentially no groundwater

APPENDIX F

Groundwater Monitoring Data



orehole name	Date	Monitored by (initials)	Borehole depth (m)	Qty free product detected (mm)	Groundwater level below ground surface (m)	Groundwater level below top of standpipe (m)	Amount purged (I)	Post purge groundwater level below top of standpipe (m)	Comments
WS01 WS02 WS03 WS04 WS05 WS06 WS07 WS08	29/10/2019 29/10/2019 29/10/2019 29/10/2019 29/10/2019 29/10/2019 29/10/2019	DB DB DB DB DB DB	2.01 4.00 4.18 4.05 4.06 4.04 3.79 4.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.60 3.21 Dry 1.45 3.88 3.06 0.94 2.18	0.40 3.10 Dry 1.39 3.82 2.99 0.94 2.06	N/A 1.00 N/A 0.00 N/A 11.00 6.00	N/Á	Grey / clear water (3/4 bottle) Grey / clear water (1/4 bottle) Orange brown, sandy water (1 bottle) Orange brown, silty water (1 bottle)

orehole name	Date	Monitored by (initials)	Borehole depth (m)	Qty free product detected (mm)	r level below ground	Groundwater level below top of standpipe (m)	Amount purged (I)	Post purge groundwater level below top of standpipe (m)	Comments
WS01 WS02 WS03 WS04 WS05 WS06 WS07 WS08	27/11/2019 27/11/2019 27/11/2019 27/11/2019 27/11/2019 27/11/2019 27/11/2019 27/11/2019	CB CB CB CB CB CB	2.01 4.12 4.20 4.12 4.14 4.06 3.92 4.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.06 0.50 0.90 0.79 1.06 N/A 0.82 1.05	N/A 0.38 0.75 0.67 0.91 N/A 0.72 0.93	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A	Most of well submerged in water (including surface water) Well submerged, unable to take reading due standing surface water.

Project No Borehole name	Date	Monitored by (initials)	Borehole depth (m)	Qty free product detected (mm)	level below ground	Groundwater level below top of standpipe (m)	Amount purged (I)	Post purge groundwater level below top of standpipe (m)	Comments
WS01 WS02 WS03 WS04 WS05 WS06 WS07 WS08	19/12/2019 19/12/2019 19/12/2019 19/12/2019 19/12/2019 19/12/2019 19/12/2019	DB DB DB DB DB DB	2.00 4.00 4.17 4.05 4.05 - 3.78 4.14	0.00 0.00 0.00 0.00 - 0.00 0.00	0.40 0.11 0.22 0.33 0.22 Flooded 0.00 0.84	0.00 0.00 0.22 0.07 Flooded 0.00 0.71	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	 WS01 metal cover was flooded prior to removing gas bung. WS02 metal cover was flooded prior to removing gas bung. Bailed 1L of water from standpipe. Recharged within 2 minutes. Rising Head test carried out in WS04. Rose 52cm within 40 minutes Rising Head test carried out in WS05. Rose 34cm within 30 minutes Area surrounding WS06 completely underwater and unable to monitor. Rising head test carried out in WS07. Rose 39cm within 60 minutes When opening WS08, water levels was monitored at 0.84m. The water rose from 0.84m to 0.69n within 3 minutes. (10:37am). At 11:57am, the standing water level was 0.27m. Areas around Window Samples: WS01: Areas of standing water around borehole. The borehole was flooded when opened. WS02: Areas of standing water around borehole. The borehole was flooded when opened. WS03: The ground is completely saturated with large areas around the borehole flooded. WS04: The ground is completely saturated with large areas around the borehole flooded. WS05: Saturated ground around the borehole. WS06: The area around WS06 is completely flooded. There are areas of standing water and unable to monitor. WS07: The ground around WS07 was saturated and the borehole was flooded when opened. WS07: The ground around WS08 was soft with localised standing water. Site ditches were raised but not overflowing.

orehole name	Date	Monitored by (initials)	Borehole depth (m)	Qty free product detected (mm)	Groundwater level below ground surface (m)	Groundwater level below top of standpipe (m)	Amount purged (I)	Post purge groundwater level below top of standpipe (m)	Comments
WS02 WS03 WS04 WS05 WS06 WS07	23/01/2020 23/01/2020 23/01/2020 23/01/2020 23/01/2020 23/01/2020 23/01/2020	CB CB CB CB CB CB CB	1.97 4.13 4.21 4.13 4.13 - 3.94 4.15	0.00 0.00 0.00 0.00 - 0.00 0.00	0.34 0.28 0.85 0.48 Flooded 0.23 0.29	0.22 0.21 0.13 0.72 0.33 Flooded 0.11 0.19	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	Area around WS06 flooded.

Client: Project No: Borehole name	Gleeson Strat BRD3511 Date	egic Land Monitored by (initials)	Borehole depth (m)	Qty free product	Groundwater level below	Groundwater level below	Amount purged	Post purge groundwater	Comments
				detected (mm)	ground surface (m)	top of standpipe (m)	(I)	level below top of standpipe (m)	
WS01 WS02 WS03 WS04 WS05 WS06 WS07 WS08	20/02/2020 20/02/2020 20/02/2020 20/02/2020 20/02/2020 20/02/2020 20/02/2020	DB DB DB DB DB DB DB	2.01 4.01 4.17 4.15 4.05 - 3.94 4.10	0.00 0.00 0.00 0.00 - 0.00 0.00	0.12 0.10 0.55 0.10 Flooded 0.12 0.13	Flooded 0.02 Flooded 0.45 Flooded Flooded 0.03	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	Area around WS06 flooded.

Borehole Date name	Monitored by (initials)	Borehole depth (m)	Qty free product detected (mm)	Groundwater level below ground surface (m)	Groundwater level below top of standpipe (m)	Amount purged (I)	Post purge groundwater level below top of standpipe (m)	Comments
WS01 19/03/2020 WS02 19/03/2020 WS03 19/03/2020 WS05 19/03/2020 WS06 19/03/2020 WS07 19/03/2020 WS08 19/03/2020	DB DB DB DB DB DB	2.01 4.00 4.16 4.15 4.04 4.01 3.94 4.12	N/A N/A N/A N/A N/A N/A	Flooded 0.10 Flooded 0.47 Flooded Flooded 0.24	Flooded Flooded 0.35 Flooded Flooded 0.14	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	

APPENDIX G

Southern Water Sewer Records

SEWER

91 Market Street Hoylake Wirral CH47 5AA Tel. 0151 632 5142 enquiries@cornerstoneprojects.co.uk www.cornerstoneprojects.co.uk VAT Reg. No. 851 4941 19 Company No. 5132353

Registered in England. Registered Address : Cornerstone Projects Ltd, 91 Market Street, Hoylake, Wirral CH47 5AA

Cornerstone Projects Ltd 91 Market Street Wirral CH47 5AA

Your ref	9028
Our ref	353810
Date	26 September 2019
Contact	searches@southernwater.co.uk Tel 0845 272 0845 0330 303 0276 Fax 01634 844514

Attention: Jake Hughes

Dear Customer

Re:Provision of public sewer record extractLocation:Fishbourne, Clay Lane, Chichester, PO19 3FE

Thank you for your order regarding the provision of extracts of our sewer and/or water main records. Please find enclosed the extracts from Southern Water's records for the above location.

We confirm payment of your fee in the sum of £49.92 and enclose a VAT receipt for your records.

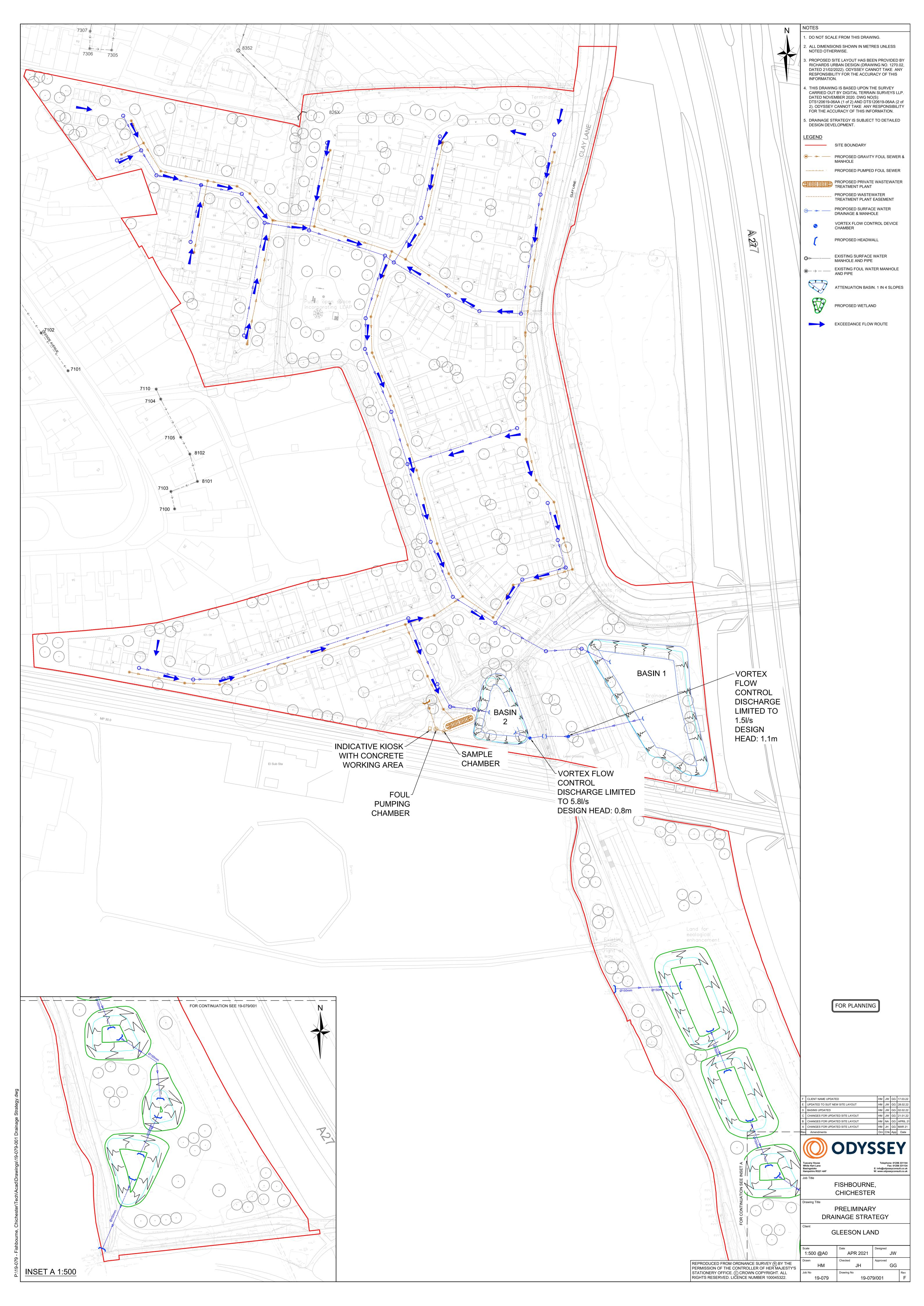
Customers should be aware that there are areas within our region in which there are neither sewers nor water mains. Similarly, whilst the enclosed extract may indicate the approximate location of our apparatus in the area of interest, it should not be relied upon as showing that further infrastructure does not exist and may subsequently be found following site investigation. Actual positions of the disclosed (and any undisclosed) infrastructure should therefore be determined on site, because Southern Water does not accept any responsibility for inaccuracy or omission regarding the enclosed plan. Accordingly it should not be considered to be a definitive document.

Should you require any further assistance regarding this matter, please contact the LandSearch team.

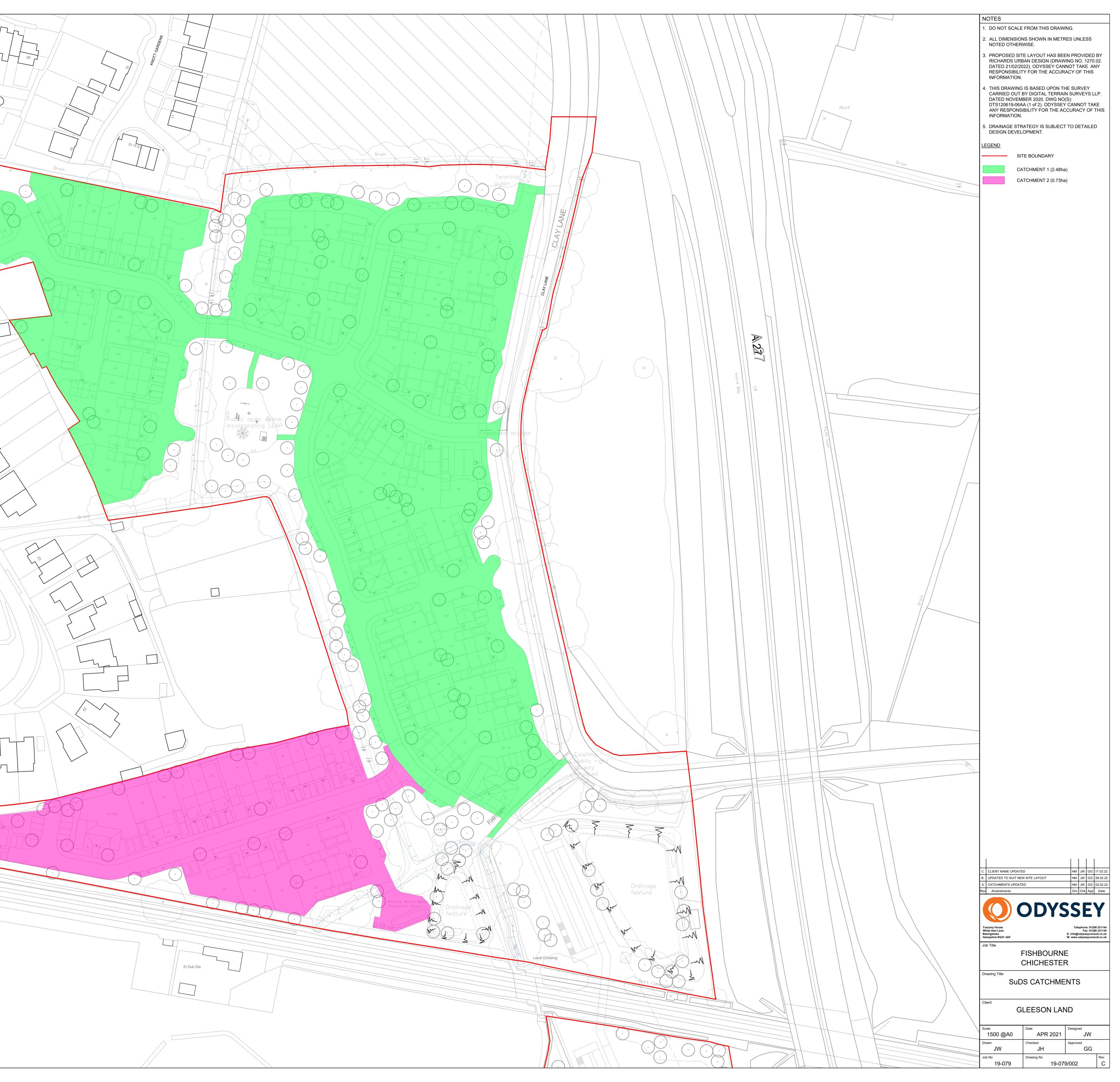
Yours faithfully

LandSearch

Node C	Cover I	Invert	Size	Material	Shape		Node	Cover	Invert	Size	Material	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			Cover	Invert	Size	Materia	CIRC
0601X 4	4.86	2.04	UNK	UNK	CIRC		5002X		5.39	225	VC VC	CIRC		7603X 7604X	11.32	9.89	150 UNK	VC	CIRC
			UNK	UNK	CIRC			6.81	3.84 6.32	225 150	PF	CIRC		760DX			UNK	UNK	CIRC
160WX			OTHER	PE	CIRC			8 7.8	6.32 5.96	150	VC	CIRC		761DX			300	VC	CIRC
1700#	5 44	2 47	UNK 250	UNK GRP	CIRC			7.52	5.85	150	VC	CIRC		762DX	16.67	15 19	UNK 150	UNK	CIRC
		2.47 2.39	225	VC	CIRC		510DX			150	PF	CIRC		7701X 7702X		15.18	UNK	UNK	CIRC
		5.49	150	VC	CIRC			8.68	7.38	150 150	PF	CIRC		7703X		13.76	150	VC	CIRC
		5.86	300	VC	CIRC			8.46	7.04	150	VC	CIRC			14.09	0.000.00	150	VC	CIRC
1800X		6.55	150	VC VC	CIRC		5301X 5302X	9.41	7.15	225	VC	CIRC		7801X		7.03	150	VC	CIRC
		5.88 6.68	150 225	VC	CIRC			9.47	8.47	150	PF	CIRC		7801X	18.56	17.36	150 UNK	PF UNK	CIRC
		6.16	225	VC	CIRC		5402X	9.58	7.87	150	VC	CIRC		7802X 7803X			UNK	UNK	CIRC
	8.11	5.27	225	VC	CIRC		5403X	9.97	8.96	150 UNK	VC UNK	CIRC		7804X			UNK	UNK	CIRC
2001X	8.52	4.57	300	VC	CIRC	*	5405X 5406X			UNK	UNK	CIRC		7805X			UNK	UNK	CIRC
	8.22	5.53 4.45	225 300	VC VC	CIRC		5407X			UNK	UNK	CIRC		780DX	0.04	6 77	UNK 150	UNK VC	CIRC
2002X 2003X	8.59	4.31	300	VČ	CIRC		5408X			UNK	UNK	CIRC		7901X 8101X	8.24	6.37	100	PF	CIRC
2003X	0.07		UNK	UNK	CIRC		540DX			UNK	UNK	CIRC		8102X			UNK	UNK	CIRC
2005X			UNK	UNK	CIRC		542DX			UNK	UNK	CIRC			8.78	6.98	600	CP	CIRC
2101X	8.41	5.82	225	VC	CIRC		544DX 5501X	11.21	9.8	150	VC	CIRC		8351X	8.61	6.89	600	CP	CIRC
2102X	8.29	5.89 6.2	175 225	VC	CIRC		5502X	10.88	9.48	150	VC	CIRC		8352X	8.38	7 14	600 150	CP VC	CIRC
2201X 2700X	0.27	0.2	UNK	UNK	CIRC		5503X	10.69	9.23	150	VC	CIRC		8400X 8401X	8.92	7.14	UNK	UNK	CIRC
2700X	6.14	2.19	225	VC	CIRC	*	5504X	10.63	9.12	150 150	VC VC	CIRC		8450X	8.92	7.4	150	VC	CIRC
2701X	5.01	2.71	250	GRP	CIRC	*	5505X 5506X	10.24	9.02	UNK	UNK	CIRC		8501X	10.72	8.79	150	VC	CIRC
	5.2	2.63	250 225	GRP VC	CIRC		5550X	11.3	9.29	600	CP	CIRC		8502X	11.05	8.27	150 150	VC	CIRC
2703X 2704X	4.77	2.82	225	VC	CIRC		5551X	10.95	9.08	600	CP	CIRC		8503X 8504X	10.45	9.08 9.01	150	VC	CIRC
2704X	5.51	2.02	150	VC	CIRC		5552X		8.98	600	CP	CIRC		8505X	4.26	1.95	150	VC	CIRC
2750X	5.88	4.9	300	VC	CIRC		5553X		8.95 8.56	600 225	VC	CIRC		8551X		3.4	225	CP	CIRC
2801X			UNK	UNK	CIRC	-	5554X 5601X		1.41	300	VC	CIRC			15.16	5	200	GRP	CIRC
2801X	8.03	6.3	225 UNK	VC	CIRC	*		11.39	9.95	150	VC	CIRC	*	8601X		1.41	225 UNK	VC	CIRC
2802X 2802X	8.18	6.36	150	VC	CIRC	*	5602Y	4.07	1.31	UNK	UNK	CIRC		8602X 8602X		1.27	150	VC	CIRC
2803X	7.98	6.15	150	VC	CIRC		5603X	3.82	1.375	1200 5 150	CO VC	CIRC		8603X		10.84	150	VC	CIRC
2804X			UNK	UNK	CIRC		5603X	13.10	5 11.755	150	VC	CIRC		8603X	4.71	3.64	150	VC	CIRC
2805X			UNK	UNK	CIRC		5604X		1.315	300	VC	CIRC		8604X		3.89	UNK 100	UNK	CIRC
2806X 280DX			UNK	UNK	CIRC		5605X	3.94	1.28	UNK	UNK	CIRC		8607X 860AX	11.62		OTHER		CIRC
2800X			225	VC	CIRC			12.61	9.44 9.34	600 600	CP	CIRC		860PX			100	PVC	CIRC
2850X	8.18	6.53	225	VC	CIRC		5651X	11.44 5.66	3.92	150	VC	CIRC		8650X	4.54	3.56	150	VC	CIRC
2851X	7.98	6.36	225 225	VC	CIRC		5701×		3.62	150	VC	CIRC	*		14.89	12.78	150 UNK	VC UNK	CIRC
2901X 3001X		7.17 4.25	300	VČ	CIRC		5702X	:		UNK	UNK	CIRC	:	8801X 880DX			UNK	UNK	CIRC
3101X		6.52	175	VC	CIRC		5703		2.129	300	VC BRE	CIRC		9601X		1.66	225	VC	CIRC
3102X	7.38	6.39	175	VC	CIRC		5703		3.25 3.19	525 525	BRE	CIRC	182	00011		1125	1000		
3103X		6.23	175	VC	CIRC		5704> 570D)		0.13	300	VC	CIRC							
3104X	8.61	6.55	UNK 225	UNK VC	CIRC		572D)	<		300	VC	CIRC							
3201X 3202X		0.00	225	UNK	CIRC		5756)	5.21	4.4	350	DI	CIRC							
3202A		7.03	150	VC	CIRC		5757		4.248	350	DI	CIRC							
3207X			UNK	UNK	CIRC		5801) 5801)		4.66	150	VC	CIRC	*						
3208X			UNK 225	UNK VC	CIRC		5802			100	VC	CIRC	*						
320DX 3301X		6.83	225	VC	CIRC		5802	K 6.95	4.38	150	PF	CIRC							
3302X			150	UNK	CIRC		5803		7.44	100 300	VC	CIRC	*						
3401X	9.85	8.53	150	VC	CIRC		5803 5804		3.44	300	VC	CIRC							
3402X	9.38	8	150 100	VC	CIRC		5805		2.956		VC	CIRC							
3403X			UNK	UNK	CIRC		5807		1000	UNK	UNK	CIRC							
3404X 3405X			UNK	VC	CIRC		5808	X		UNK	UNK	CIRC							
3405×			UNK	VC	CIRC		5809			UNK	UNK	CIRC							
340DX	<		175	VC	CIRC		5810 5811			UNK	UNK	CIRC							
341DX			UNK	UNK	UNK		5812			UNK	UNK	CIRC							
342DX			UNK	UNK	CIRC		5813	X		300	VC	CIRC							
343DX 344DX			150	VC	CIRC		5901	X 5.75	3.44		VC	CIRC							
3450X	X		225	VC	CIRC		6001			150 150	VC	CIRC							
345XX	x 9.31		225	UNK	CIRC		6002 6003			150	VC	CIRC							
3501)	x 11.2	9.88		PF	CIRC		6003			150	VC	CIRC							
	x 11.02	9.65	150 UNK	C) 1000000000000000000000000000000000000	in the second		6005	бX		100	VC	CIRC							
3602)			UNK		CIRC		6006	SX		100	VC	CIRC							
3701)	x 5.63 x 5.79		300	VC	CIRC		6007	X 8.45	5.85	150	VC	CIRC							
		1.97	225																


		5.79	1.97	300 225	VC VC	CIRC		6007X 6101X	8.45	5.85	150 225 UNK	VC VC UNK	CIRC			
	3702Y	4.54 4.54 4.61	3.4 3.84 3.02	300 150 225	VC CI VC	CIRC CIRC CIRC			8.78 8.6	6.95 6.67	175 175	VC VC	CIRC			
	3703X 3704X 3705X	4.01	0.02	UNK	UNK	CIRC		6203X 6204X	8.47	6.28	225 UNK	VC UNK	CIRC			
	3707X 370DX			UNK 300	UNK VC	CIRC		6205X 6206X			UNK	UNK	CIRC			
	371DX 3801X	6.77	3.79	300 300	VC VC	CIRC		6207X 6208X 6209X			UNK UNK UNK	UNK UNK UNK	CIRC CIRC CIRC			
	3901X	6.52 7.85	5.44 4.17 4.04	225 300 300	VC VC VC	CIRC CIRC CIRC		620DX 6210X			UNK	UNK	CIRC			
1	3902X 3903X 3904X	7.55	4.04	UNK	UNK	CIRC		6301X 6302X	8.67	6.82 6.62	225 225	VC VC	CIRC			
	4001Y 4001X			150 150	UNK UNK	CIRC	*	6303X 6304X	8.87 8.77	7.34 6.73	150 225	VC	CIRC CIRC CIRC			
	4101X 4102X	7.51 7.39	6.78 6.49	150 175	VC VC	CIRC CIRC CIRC		6311X 631DX 632DX			UNK 225 UNK	UNK VC UNK	CIRC			
	4105X 4106X			UNK UNK UNK	UNK UNK UNK	CIRC		633DX 6350X	8.8	7.68	UNK 225	UNK VC	CIRC			
	4107X 4201X 4202X	7.56 8.01	6.97 7.29	150 150	VC	CIRC		6401X 6402X	9.42 9.14	7.63 7.13	150 225	VC VC	CIRC			
	4203X 420DX	0.01		UNK 150	UNK VC	CIRC		6403X 6404X	8.66	7.21 7.3	225 150	VC VC	CIRC			
	4250X 4301X	8.35	7.47	UNK 150	UNK VC	CIRC		6405X 6407X	8.93	6.97	225 UNK 175	VC UNK VC	CIRC CIRC CIRC			
	4302X 4401X	9.96	8.5	100	VC VC VC	CIRC CIRC CIRC		640DX 641DX 642DX			100	VC	CIRC			
	4402X 4403X 4404X	9.46 9.8 9.28	8.3 8.78 8.16	150 150 150	PF	CIRC		643DX 6501X	10.31	8.34	UNK 175	UNK VC	CIRC			
	4405X 4406X	9.18	7.86	225 150	VC VC	CIRC		6601Y 6601X	12.22	10.79	300 150	VC VC	CIRC	:		
	440DX 4501X	11.34	9.59	100 175	VC VC	CIRC		6602X 6603X	12.12	11.095 10.365 6.5	150 150 150	VC VC VC	CIRC CIRC CIRC			
100	4502X 4601X	10.64	9.08	175 525	VC BRE VC	CIRC CIRC CIRC	:	6801X 6802X 6803X		0.5	100	VC	CIRC			
	4601X 4601X 4602X	3.62	5 10.66 1.523	175 375 UNK	VC UNK	CIRC	*	6804X 6901X		5.46	100 150	VC PF	CIRC			
	4602X 4602X	12.3 3.61	10.93 1.485	150 1200	VC CO	CIRC	:	6902X 7101X	8.42	5.94 7.7	150 175	VC VC	CIRC			
	4603Y 4603X	3.5 3.5	2.24 2.3	300 300	VC	CIRC	:	7102X 7103X 7104X	:	7.43	175 UNK UNK	VC UNK UNK	CIRC CIRC CIRC			
	4603X 4603X	12.44	10.72	150 UNK 100	VC UNK VC	CIRC CIRC CIRC	*	7104× 7105× 7109×	(100 UNK	PF	CIRC			
/	4604X 4604X 4604X	11.78 3.55	10.26 1.95		VC	CIRC	*	711D) 7300)	(6.39	UNK 150	UNK VC	CIRC			
	4605X 4606X	0.00		100 100	VC VC	CIRC		7302)		6.24 7.6	150 150	VC VC	CIRC			
7	4607X 4608X			100 UNK	VC	CIRC		7303) 7304)	(7.44	150 UNK	VC UNK UNK	CIRC CIRC CIRC			
	460BX 460DX			UNK	UNK	CIRC		7305) 7306) 7307)	<		UNK UNK UNK	UNK	CIRC			
	4610X 4611X			UNK UNK UNK	UNK UNK UNK	CIRC CIRC CIRC		7308)	<		UNK	UNK	CIRC			
	4612X 4613X 4614X			UNK	UNK	CIRC		730P	×		100 UNK	CI	CIRC			
	4616X 4617X			UNK UNK	UNK	CIRC			× 8.78	7.04	100 600 600	CI CP CP	CIRC CIRC CIRC			
	4618X 4619X			UNK	UNK	CIRC		7352	X 8.66 X 8.59 X 8.8	7.08 7.57 7.44	300 300	CP CP	CIRC			
	461BX 461DX			UNK UNK UNK	UNK UNK UNK	CIRC CIRC CIRC		7354	X 8.83 X 8.45	7.31 7.55	450 300	CP	CIRC			
	4620× 4628× 4620×			UNK	UNK	CIRC		7356	X 8.62 X 8.91	7.21 7.35	450 150	CP VC	CIRC			
	463BX	t.		UNK	UNK	CIRC		7401 7402	X 8.88 X 9.22	7.02	150 150	VC	CIRC			
	464D) 4650)	12.36	10.71		UNK	CIRC		7403	X	6.56	150 UNK 100	VC VC RPM	CIRC UNK CIRC			
	4651) 46BB	(11.77	9.4	600 525	CP BRE VC	CIRC CIRC CIRC		7406 7407 7408	X		100	RPM	CIRC			
	46CB)	<		100 100 525	VC VC BRE	CIRC		7410 7411	X		UNK	UNK	CIRC			
A	46EB) 46FB) 46JB)	(525 525	BRE	CIRC	•	7450	X 8.92 X 8.83	7.39 7.31	375 450	CP	CIRC			

	Ide 1 fax UNK UNK UNK UNK 461 7X UNK UNK UNK CIRC 461 8X UNK UNK UNK CIRC 461 8X UNK UNK UNK CIRC 461 9X UNK UNK UNK CIRC 461 8X UNK UNK UNK CIRC 461 8X UNK UNK UNK CIRC 462 8X UNK UNK UNK CIRC 463 8X UNK UNK UNK CIRC 464 850X UNK UNK UNK CIRC 465 8X 100 VC CIRC CIRC 466 85X 100 VC CIRC CIRC 46 851X 1.1.77 9.4 600 CP CIRC 46 851X 1.1.77 9.4 600 CP CIRC 46 852 BRE CIRC CIRC CIRC 46 853 4701X 4.31 1.78 UNK UNK CIRC * 4703X	Image: Second	3 Other (s) Image: Markensker treatment works Other Outfall headworks Outfall headworks Change in sewer (s) Image: Markensker treatment works Outfall headworks Change in sewer (s) Image: Markensker treatment works Outfall headworks Change in sewer (s) Image: Markensker treatment works Outfall headworks Play valve Image: Markensker treatment works Image: Markensker treatment works Cacacade Image: Markensker treatment works Image: Markensker treatment works Cacacade Image: Markensker treatment works Image: Markensker treatment works Cacacade Image: Markensker treatment works Image: Markensker treatment works Cacacade Image: Markensker treatment works Image: Markensker treatment works Cacacade Image: Markensker treatment works Image: Markensker treatment works Cacacade Image: Markensker treatment works Image: Markensker treatment works Closed Valve Arched Rectangular Ar Valve Arched Rectangular Hatch box (FAC) Arched Rectangular Hatch box (FAC) Horkshead Horkenskead Image: Marke
-			^
			$\langle \rangle$
484600	The information contained on this plan is provided as a guide to cannot be guaranteed. THIS INFORMATION MUST BE TREATED WITH CAU SEWERS MUST BE ESTABLISHED ON SITE, IN ALL CASES. Southern Water must be informed before lifting manho	the approximate position of existing public sewers. The accuracy thereof TION AND THE ACTUAL POSITION OF THE PUBLIC le covers or excavating trial holes.	N O Southern Water


APPENDIX H

MicroDrainage Calculations, Drainage Strategy and Catchment Drawing

 \cdot) $\overline{(\cdot)}$ Fishbourne C of E Primary School

-079 - Fishbourne, Chichester\Tech\Acad\Drawings\19-079-002 Catchment Dr

Odyssey Markides LLP		Page 1					
Tuscany House	Clay Lane, Fishbourne						
White Hart Lane	19-079						
Basingstoke RG21 4AF	Greenfield Runoff Rates	Micro					
Date 01/02/2022	Designed by JW						
File Greenfield Run off Rates	Checked by NA	Drainage					
XP Solutions	Source Control 2020.1.3						
ICP SUDS Mean Annual Flood							
	Input						

Return Period (years)2SAAR (mm)769Urban0.000Area (ha)1.928Soil0.400RegionNumberRegion7

Results 1/s

QBAR Rural 7.3 QBAR Urban 7.3 Q2 years 6.5 Q1 year 6.2 Q30 years 16.6 Q100 years 23.4

Odyssey Markides LLP		Page 1
Tuscany House	19-079	
White Hart Lane	Clay Lane, Fishbourne	
Basingstoke RG21 4AF	Chichester	Mirro
Date 01/02/2022	Designed by JW	Drainage
File Basin 1 (Large)s.srcx	Checked by NA	Digitige
XP Solutions	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

Outflow is too low. Design is unsatisfactory.

	Stor Ever		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m ³)	Status
15	min	Summer	6.148	0.254	1.3	390.1	ОК
30	min	Summer	6.232	0.338	1.3	522.8	0 K
60	min	Summer	6.321	0.427	1.3	665.8	0 K
120	min	Summer	6.405	0.511	1.3	802.4	0 K
180	min	Summer	6.454	0.560	1.3	883.6	0 K
240	min	Summer	6.488	0.594	1.3	940.2	0 K
360	min	Summer	6.533	0.639	1.3	1015.6	ΟK
480	min	Summer	6.562	0.668	1.3	1063.5	ΟK
600	min	Summer	6.582	0.688	1.3	1097.7	ΟK
720	min	Summer	6.598	0.704	1.3	1123.9	0 K
960	min	Summer	6.620	0.726	1.3	1161.8	ΟK
1440	min	Summer	6.647	0.753	1.3	1207.4	0 K
2160	min	Summer	6.672	0.778	1.3	1250.2	ΟK
2880	min	Summer	6.689	0.795	1.3	1280.1	ΟK
4320	min	Summer	6.715	0.821	1.3	1324.4	Flood Risk
5760	min	Summer	6.733	0.839	1.3	1356.6	Flood Risk
7200	min	Summer	6.750	0.856	1.3	1385.9	Flood Risk
8640	min	Summer	6.766	0.872	1.3	1413.5	Flood Risk

	Stor Ever			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	137.764	0.0	110.8	19
30	min	Summer	92.401	0.0	110.1	34
60	min	Summer	58.941	0.0	215.7	64
120	min	Summer	35.630	0.0	198.2	124
180	min	Summer	26.237	0.0	188.0	184
240	min	Summer	21.000	0.0	186.6	244
360	min	Summer	15.213	0.0	191.5	364
480	min	Summer	12.017	0.0	194.3	484
600	min	Summer	9.981	0.0	195.9	604
720	min	Summer	8.564	0.0	196.7	724
960	min	Summer	6.714	0.0	197.1	964
1440	min	Summer	4.754	0.0	195.0	1442
2160	min	Summer	3.387	0.0	397.7	2164
2880	min	Summer	2.681	0.0	395.9	2884
4320	min	Summer	1.957	0.0	386.7	4320
5760	min	Summer	1.585	0.0	796.3	5760
7200	min	Summer	1.361	0.0	797.2	7200
8640	min	Summer	1.211	0.0	792.7	8040
		C	1982-20	20 Innc	ovyze	

Odyssey Markide	s LLP					Page 2
Tuscany House		19-0)79			
White Hart Lane		Clay	/ Lane, F	ishbourn	ne	
Basingstoke RG21 4AF			chester			
Date 01/02/2022			Igned by	TM		- Micro
						Drainac
File Basin 1 (L	arge)s.srcx		cked by N			
XP Solutions		Soui	cce Contr	ol 2020	.1.3	
<u>Su</u>	ummary of Result Storm Event	Max M Level De	lax Max	Max ol Volume	eriod (+40%) Status	-
		(m) (m) (1/s)	(m³)		
	10080 min Summer	6.784 0.	890 1.	4 1444.4	Flood Risk	
	15 min Winter			3 437.0	0 К	
	30 min Winter			3 585.7	ОК	
	60 min Winter			3 746.1		
	120 min Winter	6.464 0.	570 1.	3 899.4	ОК	
	180 min Winter	6.518 0.	624 1.	3 990.6	0 K	
	240 min Winter	6.556 0.	662 1.	3 1054.2	ОК	
	360 min Winter	6.607 0.	713 1.	3 1139.3	O K	
	480 min Winter	6.638 0.	744 1.	3 1193.5	O K	
	600 min Winter	6.661 0.	767 1.	3 1232.6	O K	
	720 min Winter	6.679 0.	785 1.	3 1262.5	O K	
	960 min Winter	6.704 0.	810 1.	3 1306.5	Flood Risk	
	1440 min Winter				Flood Risk	
	2160 min Winter				Flood Risk	
	2880 min Winter				Flood Risk	
	4320 min Winter				Flood Risk	
	5760 min Winter				Flood Risk	
	7200 min Winter 8640 min Winter				Flood Risk Flood Risk	
	Solo min winter	J.JJU 1.		0.12.0	- 1000 NTOV	
	Storm	Rain	Flooded I	ischarge	Time-Peak	
	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
	10000	1 1 1 0 0	0 0	702 0	0,600	
	10080 min Summer			783.0	8680	
	15 min Winter 30 min Winter			111.1 108.9	19 34	
	60 min Winter			208.2	34 64	
	120 min Winter			188.1	124	
	TSO WITH MIHCET		0.0	T00.T		
	180 min Winter	· 26 227	\cap \cap	190 7	1 × /	
	180 min Winter 240 min Winter			190.7 195.5	182 242	
	240 min Winter	21.000	0.0	195.5	242	
		21.000 15.213	0.0	195.5 201.2		
	240 min Winter 360 min Winter	21.000 15.213 12.017	0.0 0.0 0.0	195.5	242 362	
	240 min Winter 360 min Winter 480 min Winter	21.000 15.213 12.017 9.981	0.0 0.0 0.0	195.5 201.2 204.0	242 362 480	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter	21.000 15.213 12.017 9.981 8.564	0.0 0.0 0.0 0.0 0.0	195.5 201.2 204.0 205.6	242 362 480 598	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	21.000 15.213 12.017 9.981 8.564 6.714	0.0 0.0 0.0 0.0 0.0 0.0	195.5 201.2 204.0 205.6 206.3	242 362 480 598 716	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	21.000 15.213 12.017 9.981 8.564 6.714 4.754	0.0 0.0 0.0 0.0 0.0 0.0 0.0	195.5 201.2 204.0 205.6 206.3 206.5	242 362 480 598 716 954	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	21.000 15.213 12.017 9.981 8.564 6.714 4.754 3.387	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	195.5 201.2 204.0 205.6 206.3 206.5 203.7	242 362 480 598 716 954 1428	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	21.000 15.213 12.017 9.981 8.564 6.714 4.754 3.387 2.681	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	195.5 201.2 204.0 205.6 206.3 206.5 203.7 417.1	242 362 480 598 716 954 1428 2136 2828 4232	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	21.000 15.213 12.017 9.981 8.564 6.714 4.754 3.387 2.681 1.957 1.585		195.5 201.2 204.0 205.6 206.3 206.5 203.7 417.1 414.3 402.8 837.1	242 362 480 598 716 954 1428 2136 2828 4232 5592	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	21.000 15.213 12.017 9.981 8.564 6.714 4.754 3.387 2.681 1.957 1.585 1.361		195.5 201.2 204.0 205.6 206.3 206.5 203.7 417.1 414.3 402.8	242 362 480 598 716 954 1428 2136 2828 4232	

Odyssey Markides LLP		Page 3
Tuscany House	19-079	
White Hart Lane	Clay Lane, Fishbourne	
Basingstoke RG21 4AF	Chichester	
Date 01/02/2022	Designed by JW	— Micro
File Basin 1 (Large)s.srcx	Checked by NA	Drainage
XP Solutions	Source Control 2020.1.3	
AF SOLUCIONS	Source control 2020.1.5	
Summary of Resul	ts for 100 year Return Period (+4	0%)
Storm Event	Max Max Max Max Status Level Depth Control Volume	
10000	(m) (m) (1/s) (m ³)	
10080 min Winter	c 6.917 1.023 1.4 1679.8 Flood Risk	
Storm Event	Rain Flooded Discharge Time-Peak (mm/hr) Volume Volume (mins) (m³) (m³)	
10080 min Winte	er 1.102 0.0 817.9 9480	
	01000 0000 7	
	©1982-2020 Innovyze	

Ddyssey Markides LLP			Page 4
Tuscany House	19-079		
White Hart Lane	Clay Lane, Fishbo	ourne	
Basingstoke RG21 4AF	Chichester		Micco
Date 01/02/2022	Designed by JW		Micro
			Drainage
File Basin 1 (Large)s.srcx	Checked by NA		J
XP Solutions	Source Control 2	020.1.3	
	<u>Rainfall Details</u>		
Rainfall	Model	FEH	
Return Period (-	100	
FEH Rainfall Ve		2013	
	cation GB 483998 105002 \$		
Summer 3	a Type Storms	Point Yes	
Winter :		Yes	
Cv (Si		0.750	
Cv (W		0.840	
Shortest Storm		15	
Longest Storm		10080	
Climate Cha	ange %	+40	
	<u> Time Area Diagram</u>		
	Total Area (ha) 1.514		
	Time (mins) Area		
	From: To: (ha)		
	0 4 1.514		

Odyssey Markides LLP											Pa	ge 5	
Tuscany House			-	19-07	9		-						
White Hart Lane			(Clay 1	Lane, i	Fisł	nbou	rne					
Basingstoke RG21 4A	F		(Chiche	ester						N	licro	
Date 01/02/2022			Ι	Desig	ned by	JW							nao
File Basin 1 (Large)	s.srcx		(Checke	ed by 1	NA						raina	IGE
XP Solutions				Source	e Cont	rol	202	0.1.3					
			<u>M</u> c	odel I	Detail:	<u>s</u>							
	Stor	age	is Onl	line C	over Le	vel	(m)	6.994					
		<u>T</u> ;	ank o	r Pon	d Stru	ictu	re						
			Inver	t Leve	:l (m) 5	5.894	1						
	Dept	h (m)) Area	a (m²)	Depth	(m)	Area	(m²)					
	1	0.00	0 1	1502.3	1.1	100	1	808.0					
	<u>Hydro</u>	-Bra	ake®	Optim	um Out	flo	w Co	ontrol	<u>-</u>				
					nce MD-	SHE-	-0056	-1500-					
			-	Head low (l					1.	.100			
		Des	-	lush-F				C	alcula				
					ive Mi	nimi	lse u						
			-	plicat					Surf				
			-	Availa eter (Yes 56			
		Tr		Level (,				5.	.894			
Minimum	Outlet								0.	75			
Sugge	sted Mar	nhole	e Diam	eter (mm)				1	L200			
Control Points	Head	(m)	Flow	(l/s)	c	Contr	col P	oints		Head	(m)	Flow (1	l/s)
Design Point (Calculate Flush-Fl				1.5 1.3	Mean F	low	over		-Flo® Range		.504 -		1.1 1.2
The hydrological calcu													е
Hydro-Brake® Optimum a Hydro-Brake Optimum® b													date
Depth (m) Flow (l/s) Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	ı (m)	Flow	(1/s)	
0.100 1.		.200		1.6		000		2.4		7.000		3.5	
0.200 1.		.400		1.7		500		2.5		7.500		3.6	
0.300 1.		.600		1.8		000		2.7		3.000		3.7	
0.400 1.		.800		1.9		500		2.9		3.500		3.8	
0.500 1. 0.600 1.		.000		2.0 2.0		000 500		3.0 3.1		9.000 9.500		3.9 4.0	
0.800 1.		.400		2.0		000		3.3				4.0	
1.000 1.		.600		2.2	1	500		3.4					

Odyssey Markid	es LLP					Page 1
Tuscany House		19-0	079			
White Hart Lan	е	Clay	y Lane,	Fishbour	ne	
Basingstoke R	Chio	chester			Micco	
Date 01/02/202		Des	igned by	Z JW		_ Micro
File Basin 2 (Small).srcx			cked by			Drainag
XP Solutions			_	rol 2020	1 0	
XP SOLULIONS		Sou		2020	.1.3	
C	ummany of Docult	for 1	0.0	Dotumn D	$a_{\rm min} (140\%)$	
2	ummary of Result	S IOP 1	<u>uu year</u>	Return P	erioa (+40%)	<u>.</u>
	Storm	Max N	lax Ma	x Max	Status	
	Event			rol Volume		
		(m)	(m) (1/	s) (m³)		
		c 070 0				
	15 min Summer 30 min Summer			5.8 106.4 5.8 140.5		
	60 min Summer				Flood Risk	
	120 min Summer				Flood Risk	
	180 min Summer	6.340 0.	. 626		Flood Risk	
	240 min Summer	6.344 0.	.630		Flood Risk	
	360 min Summer	6.332 0.	618		Flood Risk	
	480 min Summer	6.313 0.	.599	5.8 195.8	Flood Risk	
	600 min Summer	6.293 0.	.579		Flood Risk	
	720 min Summer				Flood Risk	
	960 min Summer				Flood Risk	
	1440 min Summer			5.8 129.7		
	2160 min Summer 2880 min Summer			5.8 94.3 5.8 69.4		
	4320 min Summer			5.6 42.3		
	5760 min Summer			5.2 32.5		
	7200 min Summer			4.6 28.5		
	8640 min Summer	5.815 0.	.101	4.1 25.9	O K	
	10080 min Summer	5.809 0.	.095	3.8 24.1	0 K	
	Storm	Rain	Flooded	Discharge	Time-Peak	
	Storm Event		Flooded Volume	-	Time-Peak (mins)	
				-		
	Event	(mm/hr)	Volume (m³)	Volume (m³)	(mins)	
	Event 15 min Summe	(mm/hr) r 137.764	Volume (m ³)	Volume (m ³) 109.2	(mins) 18	
	Event	(mm/hr) r 137.764 r 92.401	Volume (m ³) 0.0	Volume (m ³) 109.2 146.8	(mins) 18 33	
	Event 15 min Summe 30 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941	Volume (m ³) 0.0 0.0	Volume (m ³) 109.2 146.8 188.5	(mins) 18 33 62	
	Event 15 min Summe 30 min Summe 60 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0	(mins) 18 33 62 122	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000	Volume (m³)	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9	(mins) 18 33 62 122 182 240	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213	Volume (m³) 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 9 0.0 9 0.0 9 0.0 9 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2	(mins) 18 33 62 122 182 240 320	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017	Volume (m³) 4 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8	(mins) 18 33 62 122 182 240 320 380	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981	Volume (m³) 4 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5	(mins) 18 33 62 122 182 240 320 380 442	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 600 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564	Volume (m ³) 4 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0	(mins) 18 33 62 122 182 240 320 380 442 508	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714	Volume (m ³) 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 7 0.0 8 0.0 9 0.0 10 0.0 10 0.0 10 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9	(mins) 18 33 62 122 182 240 320 380 442 508 636	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714 r 4.754	Volume (m ³) 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 7 0.0 8 0.0 9 0.0 10 0.0 10 0.0 10 0.0 10 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9 365.2	(mins) 18 33 62 122 182 240 320 380 442 508 636 894	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714 r 4.754 r 3.387	Volume (m ³) 1 0.0 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9 365.2 391.0	(mins) 18 33 62 122 182 240 320 380 442 508 636 894 1260	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714 r 4.754 r 3.387 r 2.681	Volume (m ³) 1 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9 365.2 391.0 412.5	(mins) 18 33 62 122 182 240 320 380 442 508 636 894 1260 1612	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714 r 4.754 r 3.387 r 2.681 r 1.957	Volume (m ³) 4 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9 365.2 391.0 412.5 451.3	(mins) 18 33 62 122 182 240 320 380 442 508 636 894 1260 1612	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714 r 4.754 r 3.387 r 2.681 r 1.957 r 1.585	Volume (m ³) 4 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9 365.2 391.0 412.5 451.3 488.3	(mins) 18 33 62 122 182 240 320 380 442 508 636 894 1260 1612 2288 2944	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe 320 min Summe	(mm/hr) r 137.764 r 92.401 r 58.941 r 35.630 r 26.237 r 21.000 r 15.213 r 12.017 r 9.981 r 8.564 r 6.714 r 3.387 r 2.681 r 1.957 r 1.585 r 1.361 r 1.211	Volume (m ³) 4 0.0 0 0.0	Volume (m ³) 109.2 146.8 188.5 228.0 251.9 268.9 292.2 307.8 319.5 329.0 343.9 365.2 391.0 412.5 451.3 488.3 524.1	(mins) 18 33 62 122 182 240 320 380 442 508 636 894 1260 1612 2288 2944 3672	

Odyssey Markides LLP					Page 2
Tuscany House	19-0	79			
White Hart Lane	Clay	Lane, F	ishbourn	ne	
Basingstoke RG21 4AF	Chic	hester			Micro
Date 01/02/2022	Desi	gned by	JW		
File Basin 2 (Small).srcx	Chec	ked by N	A		Drainage
XP Solutions	Sour	ce Contr	ol 2020	.1.3	
Summary of Results :	<u>Eor 10</u>)0 year F	Return P	eriod (+40%)	
		ax Max	Max	Status	
	-	pth Contro m) (1/s)			
(*) (1/3)	(111)		
15 min Winter 6.			8 119.6		
30 min Winter 6.				Flood Risk	
60 min Winter 6. 120 min Winter 6.				Flood Risk	
120 min Winter 6. 180 min Winter 6.		000 D. 693 F		Flood Risk Flood Risk	
240 min Winter 6.	407 0.0	093 J. 700 5		Flood Risk	
360 min Winter 6.				Flood Risk Flood Risk	
480 min Winter 6.	381 0	667 5		Flood Risk	
600 min Winter 6.	357 0	643 5		Flood Risk	
720 min Winter 6.				Flood Risk	
960 min Winter 6.				Flood Risk	
1440 min Winter 6.			8 133.3		
2160 min Winter 6.			8 81.0		
2880 min Winter 5.			7 49.4		
4320 min Winter 5.	831 0.3	117 4.	8 30.0	ОК	
5760 min Winter 5.	812 0.0	098 4.	0 24.9	ОК	
7200 min Winter 5.	802 0.0	088 3.	4 22.2	O K	
8640 min Winter 5.			1 20.5	0 K	
10080 min Winter 5.	790 0.0	076 2.	8 19.3	ОК	
Storm	Rain	Flooded [)ischarge	Time-Peak	
		Volume	-	(mins)	
		(m³)	(m³)		
15 min Winter 1	37 761	0 0	122 A	18	
30 min Winter			164.5		
60 min Winter			211.2		
120 min Winter			255.5		
180 min Winter			282.2		
240 min Winter			301.2		
360 min Winter			327.3		
480 min Winter			344.8		
600 min Winter	9.981	0.0	357.9	470	
720 min Winter	8.564	0.0	368.5	546	
960 min Winter	6.714		385.2		
1440 min Winter			409.1		
2160 min Winter	3.387		437.9		
2880 min Winter	2.681		462.1		
4320 min Winter	1.957		505.6		
5760 min Winter	1.585		546.9		
7200 min Winter	1.361		587.0		
8640 min Winter	1.211		626.2		
10080 min Winter	1.102		664.6	4392 5144	

Ddyssey Markides LLP			Page 3
Fuscany House	19-079		
White Hart Lane	Clay Lane, Fishbo	ourne	
Basingstoke RG21 4AF	Chichester		Micco
Date 01/02/2022	Designed by JW		— Micro
File Basin 2 (Small).srcx	Checked by NA		Drainago
KP Solutions	Source Control 20	20.1.3	
	<u>Rainfall Details</u>		
Rainfall Poturn Poriod (1		FEH 100	
Return Period (y FEH Rainfall Ve		2013	
	ersion cation GB 483998 105002 S		
	ation GB 485998 105002 S a Type	0 83998 03002 Point	
Summer S		Yes	
Winter S		Yes	
CV (Su		0.750	
Cv (Wi		0.840	
Shortest Storm (15	
Longest Storm (10080	
Climate Cha		+40	
	<u>Time Area Diagram</u>		
	Total Area (ha) 0.428		
	Time (mins) Area		
	From: To: (ha)		
	0 4 0.428		

Odyssey Mar		LLP											Pa	ge 4	
Tuscany Hou						19-07									
White Hart 3	Lane				(Clay 1	Lane,	Fis	hbou	rne					
Basingstoke	RG21	1 4AF			(Chiche	ester						N	licro	
Date 01/02/2	2022				Ι	Design	ned by	/ JW						raina	יחנ
File Basin 2	2 (Sma	all).	srcx		(Checke	ed by	NA							JU
XP Solution	S					Source	e Cont	rol	202	0.1.3					
					Mc	odel I	Detail	<u>.s</u>							
			Stor	age :	is Onl	Line C	over Le	evel	(m)	6.514					
				<u>Ta</u>	ank o	<u>r Pon</u>	d Str	ucti	<u>ire</u>						
					Inver	t Leve	1 (m)	5.71	4						
			Deptl	h (m)) Area	a (m²)	Depth	(m)	Area	(m²)					
			(0.00	0	242.5	0.	.800		489.4					
			Hydro	-Bra	ake®	Optim	ium Ou	tflo	ow Co	ontrol	<u>.</u>				
					Unit	Refere	nce MD	-SHF	-0116	-5800-	0800-5	800			
				Γ		Head						800			
				Des	-	low (l				~		5.8			
						lush-F	'lo™ ive M	inim	ieo 1		alcula m stor				
						plicat		±11±111	136 0	pscrea	Surf	-			
					-	Availa						Yes			
				_		eter (,					116			
	Min	imum (Dutlet			Level eter (714 150			
			ted Mar	-								200			
Control	Point	s	Head	(m)	Flow	(1/s)		Cont	rol E	oints		Head	(m)	Flow (1/s)
Design Point) 0 m 0			5.8 5.8	Mean B	Flow	over		-Flo® Range		.543 -		4.8 5.0
The hydrolo	-									-			-		e
Hydro-Brake Hydro-Brake															dat
Depth (m)	Flow	(l/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(l/s)	
0.100		4.1		.200		7.0	1	.000		10.8		.000		16.2	
0.200		5.8		.400		7.5	1	.500		11.6	1	.500		16.7	
0.300 0.400		5.8 5.6		.600		8.0 8.5	1	.000		12.4 13.1	1	.000		17.2 17.7	
0.400		5.2	1	.000		8.9		.000		13.1	1	.000		18.2	
0.600		5.1		.200		9.3	1	.500		14.4	1	.500		18.7	
0.800		5.8	1	.400		9.7	1	.000		15.0				/	
1 000)	6.4	2	.600		10.1	6.	.500		15.6					
1.000															
1.000															
1.000) Innc								

APPENDIX I

Maintenance Schedule

Maintenance schedule	Required action	Typical frequency
	Remove litter and debris	Monthly
	Cut grass – for spillways and access routes	Monthly (during growing season), or as required
Regular maintenance	Cut grass – meadow grass in and around basin	Half yearly (spring – befor nesting season, and autur
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), the annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
	Manage wetland plants in outlet pool – where provided	Annually (as set out in Chapter 23)
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as requi
Occasional maintenance	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minir requirements where effec upstream source control is provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
Remedial actions	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

22.13 REFERENCE

KENNARD, M F, HOSKINS, C G and FLETCHER, M (1996) *Small embankment reservoirs*, R161, CIRIA, London, UK (ISBN: 978-0-86017-461-5). Go to: **www.ciria.org**

Statutes

Reservoir Act 1975 (c.23)

Health and Safety at Work (etc) Act 1974 (c.37)

Building Act 1984 (c.55)

Flood and Water Management Act 2010 (c.29)

Construction (Design and Management) Regulations (CDM) 2015